So the project I am working on requires a distributed tasks system to process CPU intensive tasks. This is relatively straight forward, spin up celery and throw all the tasks in a queue and have celery do the rest.
The issue I have is that every user needs their own queue, and items within each users queue must be processed synchronously. So it there is a task in a users queue already processing, wait until it is finished before allowing a worker to pick up the next.
The closest I've come to something like this is having a fixed set of queues, and assigning them to users. Then having the users tasks picked off by celery workers fixed to a certain queue with a concurrency of 1.
The problem with this system is that I can't scale my workers to process a backlog of user tasks.
Is there a way I can configure celery to do what I want, or perhaps another task system exists that does what I want?
Edit:
Currently I use the following command to spawn my celery workers with a concurrency of one on a fixed set of queues
celery multi start 4 -A app.celery -Q:1 queue_1 -Q:2 queue_2 -Q:3 queue_3 -Q:4 queue_4 --logfile=celery.log --concurrency=1
I then store a queue name on the user object, and when the user starts a process I queue a task to the queue stored on the user object. This gives me my synchronous tasks.
The downside is when I have multiple users sharing queues causing tasks to build up and never getting processed.
I'd like to have say 5 workers, and a queue per user object. Then have the workers just hop over the queues, but never have more than 1 worker on a single queue at a time.