0
votes

I am currently trying to figure out a way to rotate an object along axis relative to the user and not relative to the object. I'm doing this with Javascript (jQuery) and CSS transform rotate.

I have built a codepen for to test it out.

var bX = 0; //bufferX (user scroll input)
var bY = 0; //bufferY (user scroll input)
var cX = 0; //currentX (effective X rotation)
var cY = 0; //currentY (effective Y rotation)

var bBX = 0; // same second rotation properties
var bBY = 0; 
var cBX = 0; 
var cBY = 0; 
var cBZ = 0; // currentZ (effective Z rotation)

var pi = 3.1416

// Fidget animation
function fidget() {
	if (!(bX + bY == 0)) {
		var dX = bX * 0.1; // how much we rotate this frame
		var dY = bY * 0.1; 
    
		cX = (cX + dX) % (2 * pi); // set rotation value
    cY = (cY + dY) % (2 * pi); 
    
		bX -= dX; // update buffer
		bY -= dY;
	}
	$('#one').css('transform', 'rotateX(' + cX + 'rad) rotateY(' + cY + 'rad)');
  window.requestAnimationFrame(fidget);
}

function fidgetB() {
	if (!(bBX + bBY == 0)) {
		var dBX = bBX * 0.1;
		cBX = (cBX + dBX) % (2 * pi);

		var rBY = Math.cos(cBX); //Y ratio
		var rBZ = Math.sin(cBX); //Z ratio

		var dBY = bBY * 0.1; // deltaY 
		var dBZ = bBY * 0.1;
		cBY = (cBY + rBY * dBY) % (2 * pi); // current
		cBZ = (cBZ - rBZ * dBZ) % (2 * pi);

		bBX -= dBX; // buffer
		bBY -= (dBY);
	}
	$('#two').css('transform', 'rotateX(' + cBX + 'rad) rotateY(' + cBY + 'rad) rotateZ(' + cBZ + 'rad)');
  window.requestAnimationFrame(fidgetB);
}

var init = function () {
  
  // Fidget
	requestAnimationFrame(fidget);
  requestAnimationFrame(fidgetB);
  
  // scroll detection script 
!function(window,document){var prefix="",_addEventListener,support;function _addWheelListener(elem,eventName,callback,useCapture){elem[_addEventListener](prefix+eventName,"wheel"==support?callback:function(originalEvent){!originalEvent&&(originalEvent=window.event);var event={originalEvent:originalEvent,target:originalEvent.target||originalEvent.srcElement,type:"wheel",deltaMode:"MozMousePixelScroll"==originalEvent.type?0:1,deltaX:0,deltaY:0,deltaZ:0,preventDefault:function(){originalEvent.preventDefault?originalEvent.preventDefault():originalEvent.returnValue=!1}};return"mousewheel"==support?(event.deltaY=-.025*originalEvent.wheelDelta,originalEvent.wheelDeltaX&&(event.deltaX=-.025*originalEvent.wheelDeltaX)):event.deltaY=originalEvent.deltaY||originalEvent.detail,callback(event)},useCapture||!1)}window.addEventListener?_addEventListener="addEventListener":(_addEventListener="attachEvent",prefix="on"),support="onwheel"in document.createElement("div")?"wheel":void 0!==document.onmousewheel?"mousewheel":"DOMMouseScroll",window.addWheelListener=function(elem,callback,useCapture){_addWheelListener(elem,support,callback,useCapture),"DOMMouseScroll"==support&&_addWheelListener(elem,"MozMousePixelScroll",callback,useCapture)}}(window,document);

	window.addWheelListener(window, function (e) {
		e.preventDefault();
		bY -= e.deltaX / window.innerWidth;
		bX += e.deltaY / window.innerWidth;
    bBY -= e.deltaX / window.innerWidth;
		bBX += e.deltaY / window.innerWidth;
	});
};

jQuery(document).ready(function ($) {
	init();
});
html, html * {
	margin: 0;
	padding: 0;
	-webkit-box-sizing: border-box;
	box-sizing: border-box;
  color:white;
  text-align: center;
  font-size: 6vmin;
  font-family: sans-serif;
}

#intro {
	position:absolute;
	width: 100%;
	height: 100%;
  -webkit-perspective: 200vmax;
	perspective: 200vmax;
	-webkit-perspective-origin: 50% 50%;
	perspective-origin: 50% 50%;
  transform-style: preserve-3d;
}

#one {
  left: 33%;
}

#two {
  left: 66%;
}

.square {
  background-color: black;
  width: 50vmin;
  height: 50vmin;
  line-height: 50vmin;
  top: 50%;
  margin-top: -25vmin;
  margin-left: -25vmin;
  
	transform-style: preserve-3d;
	
	position: absolute;
	-webkit-backface-visibility: visible;
	backface-visibility: visible;
	-webkit-transform-origin: 50% 37%;
	transform-origin: 50% 37%;
	/* -webkit-animation: rotate 25s linear infinite;
	animation: rotate 25s linear infinite; */
	pointer-events: none;
}
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"></script>
<div id="intro">
  <div id="one" class="square">Object</div>
  <div id="two" class="square">User</div>
</div>

[https://codepen.io/rsepierre/pen/XqVJKR][1]

To control the rotation of any of those square you scroll with the mousewheel/touchpad (shift+wheel to scroll Y axis. Would add touchsupport when sorted out)


  • The left square's rotation is relative to the object:

if you only scroll left<->right, no problem, it works. Same for up<->down.

Now if you lay the item flat (scroll 90° down<->up ) and then you try to rotate on the other axis ( left<->right ), it will rotate on itself. Which mean that to the user it will appear like a Z-axis rotation (like a clock).


  • The right square's rotation is my attempt to make the rotation relative to the user :

if you scroll left<->right, no problem, it works. Same for up<->down.

if you lay the item flat again (scroll 90° down<->up ) and then you try to rotate on the other axis ( scroll left<->right ), it will rotate relative to the user. The item rotates on the "Z" axis, but will appears like a Y axis rotation from the users perspective.

And it is actualy working : IF you only make scroll up<->down by 90° steps and never get in between. Even if you get a 89° angle instead of a 90° angle when you scroll up<->down, it will slowly become a mess.


  • My best bet for a solution :

I came to understand that 3D rotations are not commutative (the order in which you apply rotations will impact the final result, this is why only the Y-axis rotation gets screwed up, and the X-axis rotation never does).

One easy fix would be to just add each new user input into a new rotation (rotateX(100) rotateY(5) rotateY(20) rotateX(105)... indefinitly.

But obviously i'm doing this 60times per second, it would very quickly become the worste CPU/GPU leek you've seen in a while.

Because of this I believe that somehow I should do the all the math behind the scene in JS and apply only one rotate3D(X,Y,Z,angle) css rotation.

Thing is I don't know anything about the math behind rotation matrices. I found this converter to translate 3D rotation things into others 3D rotation things, but I think I would need to understand what is what to begin to do any math.

Any help much apreciated.

1

1 Answers

0
votes

Found this stackoverflow post. It's not exactly the same situation but really the same problem.

Will post updated code when I get there.

meanwhile :

Rotating CSS cube on fixed axes