3
votes

I have an apache-beam based dataflow job to read using vcf source from a single text file (stored in google cloud storage), transform text lines into datastore Entities and write them into the datastore sink. The workflow works fine but the cons I noticed is that:

  • The write speed into datastore is at most around 25-30 entities per second.
  • I tried to use --autoscalingAlgorithm=THROUGHPUT_BASED --numWorkers=10 --maxNumWorkers=100 but the execution seems to prefer one worker (see graph below: the target workers once increased to 2 but reduced to 1 "based on the ability to parallelize the work in the currently running step").

I did not use ancestor path for the keys; all the entities are the same kind.

The pipeline code looks like below:

def write_to_datastore(project, user_options, pipeline_options):
"""Creates a pipeline that writes entities to Cloud Datastore."""
  with beam.Pipeline(options=pipeline_options) as p:
  (p
   | 'Read vcf files' >> vcfio.ReadFromVcf(user_options.input)
   | 'Create my entity' >> beam.ParDo(
     ToEntityFn(), user_options.kind)
   | 'Write to datastore' >> WriteToDatastore(project))

Because I have millions of rows to write into the datastore, it would take too long to write with a speed of 30 entities/sec.

Question: The input is just one huge gzipped file. Do I need to split it into multiple small files to trigger multiple workers? Is there any other way I can make the importing faster? Do I miss something in the num_workers setup? Thanks!

2

2 Answers

2
votes

I'm not familiar with apache beam, the answer is from the general flow perspective.

Assuming there are no dependencies to be considered between entity data in various input file sections then yes, working with multiple input files should definitely help as all these files could then be processed virtually in parallel (depending, of course, on the max number of available workers).

You might not need to split the huge zipfile beforehand, it might be possible to simply hand off segments of the single input data stream to separate data segment workers for writing, if the overhead of such handoff itself is neglijible compared to the actual data segment processing.

The overall performance limitation would be the speed of reading the input data, splitting it in segments and handoff to the segment data workers.

A data segment worker would further split the data segment it receives in smaller chunks of up to the equivalent of the max 500 entities that can be converted to entities and written to the datastore in a single batch operation. Depending of the datastore client library used it may be possible to perform this operation asyncronously, allowing the split into chunks and conversion to entities to continue without waiting for the previous datastore writes to complete.

The performance limitation at the data segment worker would then be the speed at which the data segment can be split into chunks and the chunk converted to entities

If async ops aren't available or for even higher throughput, yet another handoff of each chunk to a segment worker could be performed, with the segment worker performing the conversion to entities and datastore batch write.

The performance limitation at the data segment worker level would then be just the speed at which the data segment can be split into chunks and handed over to the chunk workers.

With such approach the actual conversion to entities and batch writing them to the datastore (async or not) would no longer sit in the critical path of splitting the input data stream, which is, I believe, the performance limitation in your current approach.

2
votes

I looked into the design of vcfio. I suspect (if I understand correctly) that the reason I always get one worker when the input is a single file is due to the limit of the _VcfSource and the VCF format constraint. This format has a header part that defines how to translate the non-header lines. This causes that each worker that reads the source file has to work on an entire file. When I split the single file into 5 separate files that share the same header, I successfully get up to 5 workers (but not any more probably due to the same reason).

One thing I don't understand is that the number of workers that read can be limited to 5 (in this case). But why we are limited to have only 5 workers to write? Anyway, I think I have found the alternative way to trigger multiple workers with beam Dataflow-Runner (use pre-split VCF files). There is also a related approach in gcp variant transforms project, in which the vcfio has been significantly extended. It seems to support the multiple workers with a single input vcf file. I wish the changes in that project could be merged into the beam project too.