Let's say we have a function merge
that, well, just merges two lists:
Order : Type -> Type
Order a = a -> a -> Bool
merge : (f : Order a) -> (xs : List a) -> (ys : List a) -> List a
merge f xs [] = xs
merge f [] ys = ys
merge f (x :: xs) (y :: ys) = case x `f` y of
True => x :: merge f xs (y :: ys)
False => y :: merge f (x :: xs) ys
and we'd like to prove something clever about it, for instance, that merging two non-empty lists produces a non-empty list:
mergePreservesNonEmpty : (f : Order a) ->
(xs : List a) -> (ys : List a) ->
{auto xsok : NonEmpty xs} -> {auto ysok : NonEmpty ys} ->
NonEmpty (merge f xs ys)
mergePreservesNonEmpty f (x :: xs) (y :: ys) = ?wut
Inspecting the type of the hole wut
gives us
wut : NonEmpty (case f x y of True => x :: merge f xs (y :: ys) False => y :: merge f (x :: xs) ys)
Makes sense so far! So let's proceed and case-split as this type suggests:
mergePreservesNonEmpty f (x :: xs) (y :: ys) = case x `f` y of
True => ?wut_1
False => ?wut_2
It seems reasonable to hope that the types of wut_1
and wut_2
would match the corresponding branches of merge
's case expression (so wut_1
would be something like NonEmpty (x :: merge f xs (y :: ys))
, which can be instantly satisfied), but our hopes fail: the types are the same as for the original wut
.
Indeed, the only way seems to be to use a with
-clause:
mergePreservesNonEmpty f (x :: xs) (y :: ys) with (x `f` y)
mergePreservesNonEmpty f (x :: xs) (y :: ys) | True = ?wut_1
mergePreservesNonEmpty f (x :: xs) (y :: ys) | False = ?wut_2
In this case the types would be as expected, but this leads to repeating the function arguments for every with
branch (and things get worse once with
gets nested), plus with
doesn't seem to play nice with implicit arguments (but that's probably worth a question on its own).
So, why doesn't case
help here, are there any reasons besides purely implementation-wise behind not matching its behaviour with that of with
, and are there any other ways to write this proof?