When running a Benchmark Experiment on multiple algorithms, with tuning wrappers etc. there will be multiple models returned for each algorithm.
What is the canonical way, or an effective way, of extracting each individual tuned model (with the various hyperparameters) so that they can be accessed individually, and used individually for predictions without all the baggage of other models etc.?
Reproducible Example
# Required Packages
# Load required packages
library(mlr)
#library(dplyr)
library(parallelMap)
library(parallel)
# Algorithms
iterations = 10L
cv_iters = 2
### classif.gamboost ############################################################################################################################
classif_gamboost = makeLearner("classif.gamboost", predict.type="prob")
##The wrappers are presented in reverse order of application
###One-Hot Encoding
classif_gamboost = makeDummyFeaturesWrapper(classif_gamboost, method = "1-of-n")
###Missing Data Imputation
classif_gamboost = makeImputeWrapper(classif_gamboost, classes = list(numeric = imputeConstant(-99999), integer = imputeConstant(-99999), factor = imputeConstant("==Missing==")), dummy.type = "numeric", dummy.classes = c("numeric","integer"))
##### Tuning #####
inner_resamp = makeResampleDesc("CV", iters=cv_iters)
ctrl = makeTuneControlRandom(maxit=iterations)
hypss = makeParamSet(
makeDiscreteParam("baselearner", values=c("btree")), #,"bols","btree","bbs"
makeIntegerParam("dfbase", lower = 1, upper = 5),
makeDiscreteParam("family", values=c("Binomial")),
makeDiscreteParam("mstop", values=c(10,50,100,250,500,1000))
)
classif_gamboost = makeTuneWrapper(classif_gamboost, resampling = inner_resamp, par.set = hypss, control = ctrl, measures = list(auc, logloss, f1, ber, acc, bac, mmce, timetrain), show.info=TRUE)
### classif.gamboost ############################################################################################################################
### Random Forest ############################################################################################################################
classif_rforest = makeLearner("classif.randomForestSRC", predict.type="prob")
##The wrappers are presented in reverse order of application
###One-Hot Encoding
classif_rforest = makeDummyFeaturesWrapper(classif_rforest, method = "1-of-n")
###Missing Data Imputation
classif_rforest = makeImputeWrapper(classif_rforest, classes = list(numeric = imputeConstant(-99999), integer = imputeConstant(-99999), factor = imputeConstant("==Missing==")), dummy.type = "numeric", dummy.classes = c("numeric","integer"))
##### Tuning #####
inner_resamp = makeResampleDesc("CV", iters=cv_iters)
ctrl = makeTuneControlRandom(maxit=iterations)
hypss = makeParamSet(
makeIntegerParam("mtry", lower = 1, upper = 30)
,makeIntegerParam("ntree", lower = 100, upper = 500)
,makeIntegerParam("nodesize", lower = 1, upper = 100)
)
classif_rforest = makeTuneWrapper(classif_rforest, resampling = inner_resamp, par.set = hypss, control = ctrl, measures = list(auc, logloss, f1, ber, acc, bac, mmce, timetrain), show.info=TRUE)
### Random Forest ############################################################################################################################
trainData = mtcars
target_feature = "am"
training_task_name = "trainingTask"
trainData[[target_feature]] = as.factor(trainData[[target_feature]])
trainTask = makeClassifTask(id=training_task_name, data=trainData, target=target_feature, positive=1, fixup.data="warn", check.data=TRUE)
train_indices = 1:25
valid_indices = 26:32
outer_resampling = makeFixedHoldoutInstance(train_indices, valid_indices, nrow(trainData))
no_of_cores = detectCores()
parallelStartSocket(no_of_cores, level=c("mlr.tuneParams"), logging = TRUE)
lrns = list(classif_gamboost, classif_rforest)
res = benchmark(tasks = trainTask, learners = lrns, resampling = outer_resampling, measures = list(logloss, auc, f1, ber, acc, bac, mmce, timetrain), show.info = TRUE, models = TRUE, keep.pred = FALSE)
parallelStop()
models = getBMRModels(res)
models