I'm new in keras and deep learning field. In fact, I built a deep autoencoder using keras library based on ionosphere data set, which contains a mixed data frame (float, strings"objects", integers..) so I tried to replace all object colunms to float or integer type since the autoencoder refuses being fed with object samples. The training set contains 10000 samples with 48 columns and the validation set contains 5000 samples. I didn't do any normalization of the input data because I thought isn't really necessary for autoencoder model. I used a binary cross entropy loss function, am not sure if that could be the reason of having a constant loss and a constant accuracy values during training. I tried different number of epochs but I got the same thing. I tried also to change the batch size but no change. Can any one help me find the problem please.
input_size = 48
hidden_size1 = 30
hidden_size2 = 20
code_size = 10
batch_size = 80
checkpointer = ModelCheckpoint(filepath="model.h5",
verbose=0,
save_best_only=True)
tensorboard = TensorBoard(log_dir='./logs',
histogram_freq=0,
write_graph=True,
write_images=True)
input_enc = Input(shape=(input_size,))
hidden_1 = Dense(hidden_size1, activation='relu')(input_enc)
hidden_11 = Dense(hidden_size2, activation='relu')(hidden_1)
code = Dense(code_size, activation='relu')(hidden_11)
hidden_22 = Dense(hidden_size2, activation='relu')(code)
hidden_2 = Dense(hidden_size1, activation='relu')(hidden_22)
output_enc = Dense(input_size, activation='sigmoid')(hidden_2)
autoencoder_yes = Model(input_enc, output_enc)
autoencoder_yes.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])
history = autoencoder_yes.fit(df_noyau_yes, df_noyau_yes,
epochs=200,
batch_size=batch_size,
shuffle = True,
validation_data=(df_test_yes, df_test_yes),
verbose=1,
callbacks=[checkpointer, tensorboard]).history
Epoch 176/200
80/7412 [..............................] - ETA: 2s - loss: -15302256.0000 - acc: 0.4357
320/7412 [>.............................] - ETA: 2s - loss: -16773740.2500 - acc: 0.4448
480/7412 [>.............................] - ETA: 2s - loss: -16924116.1667 - acc: 0.4444
720/7412 [=>............................] - ETA: 2s - loss: -17179484.1111 - acc: 0.4460
960/7412 [==>...........................] - ETA: 2s - loss: -17382038.5833 - acc: 0.4463
1120/7412 [===>..........................] - ETA: 1s - loss: -17477103.7857 - acc: 0.4466
1360/7412 [====>.........................] - ETA: 1s - loss: -17510808.8824 - acc: 0.4466
1520/7412 [=====>........................] - ETA: 1s - loss: -17337536.3158 - acc: 0.4462
1680/7412 [=====>........................] - ETA: 1s - loss: -17221621.6190 - acc: 0.4466
1840/7412 [======>.......................] - ETA: 1s - loss: -17234479.0870 - acc: 0.4467
2000/7412 [=======>......................] - ETA: 1s - loss: -17336909.4000 - acc: 0.4469
2160/7412 [=======>......................] - ETA: 1s - loss: -17338357.2222 - acc: 0.4467
2320/7412 [========>.....................] - ETA: 1s - loss: -17434196.3103 - acc: 0.4465
2560/7412 [=========>....................] - ETA: 1s - loss: -17306412.6875 - acc: 0.4463
2720/7412 [==========>...................] - ETA: 1s - loss: -17229429.4118 - acc: 0.4463
2880/7412 [==========>...................] - ETA: 1s - loss: -17292270.6667 - acc: 0.4461
3040/7412 [===========>..................] - ETA: 1s - loss: -17348734.3684 - acc: 0.4463
3200/7412 [===========>..................] - ETA: 1s - loss: -17343675.9750 - acc: 0.4461
3360/7412 [============>.................] - ETA: 1s - loss: -17276183.1429 - acc: 0.4461
3520/7412 [=============>................] - ETA: 1s - loss: -17222447.5455 - acc: 0.4463
3680/7412 [=============>................] - ETA: 1s - loss: -17179892.1304 - acc: 0.4463
3840/7412 [==============>...............] - ETA: 1s - loss: -17118994.1667 - acc: 0.4462
4080/7412 [===============>..............] - ETA: 1s - loss: -17064828.6275 - acc: 0.4461
4320/7412 [================>.............] - ETA: 0s - loss: -16997390.4074 - acc: 0.4460
4480/7412 [=================>............] - ETA: 0s - loss: -17022740.0357 - acc: 0.4461
4640/7412 [=================>............] - ETA: 0s - loss: -17008629.1552 - acc: 0.4460
4880/7412 [==================>...........] - ETA: 0s - loss: -16969480.9836 - acc: 0.4459
5040/7412 [===================>..........] - ETA: 0s - loss: -17028253.4921 - acc: 0.4457
5200/7412 [====================>.........] - ETA: 0s - loss: -17035566.0308 - acc: 0.4456
5360/7412 [====================>.........] - ETA: 0s - loss: -17057620.4776 - acc: 0.4456
5600/7412 [=====================>........] - ETA: 0s - loss: -17115849.8857 - acc: 0.4457
5760/7412 [======================>.......] - ETA: 0s - loss: -17117196.7500 - acc: 0.4458
5920/7412 [======================>.......] - ETA: 0s - loss: -17071744.5676 - acc: 0.4458
6080/7412 [=======================>......] - ETA: 0s - loss: -17073121.6184 - acc: 0.4459
6320/7412 [========================>.....] - ETA: 0s - loss: -17075835.3797 - acc: 0.4461
6560/7412 [=========================>....] - ETA: 0s - loss: -17081048.5610 - acc: 0.4460
6800/7412 [==========================>...] - ETA: 0s - loss: -17109489.2471 - acc: 0.4460
7040/7412 [===========================>..] - ETA: 0s - loss: -17022715.4545 - acc: 0.4460
7200/7412 [============================>.] - ETA: 0s - loss: -17038501.4222 - acc: 0.4460
7360/7412 [============================>.] - ETA: 0s - loss: -17041619.7174 - acc: 0.4461
7412/7412 [==============================] - 3s 357us/step - loss: -17015624.9390 - acc: 0.4462 - val_loss: -26101260.3556 - val_acc: 0.4473
Epoch 200/200
80/7412 [..............................] - ETA: 2s - loss: -16431795.0000 - acc: 0.4367
240/7412 [..............................] - ETA: 2s - loss: -16439401.0000 - acc: 0.4455
480/7412 [>.............................] - ETA: 2s - loss: -16591146.5000 - acc: 0.4454
640/7412 [=>............................] - ETA: 2s - loss: -16914542.8750 - acc: 0.4457
880/7412 [==>...........................] - ETA: 2s - loss: -16552313.2727 - acc: 0.4460
1120/7412 [===>..........................] - ETA: 1s - loss: -16839956.4286 - acc: 0.4459
1280/7412 [====>.........................] - ETA: 1s - loss: -16965753.3750 - acc: 0.4461
1440/7412 [====>.........................] - ETA: 1s - loss: -17060988.4444 - acc: 0.4461
1680/7412 [=====>........................] - ETA: 1s - loss: -17149844.2381 - acc: 0.4462
1840/7412 [======>.......................] - ETA: 1s - loss: -17049971.6957 - acc: 0.4462
2080/7412 [=======>......................] - ETA: 1s - loss: -17174574.2692 - acc: 0.4462
2240/7412 [========>.....................] - ETA: 1s - loss: -17131009.5357 - acc: 0.4463
2480/7412 [=========>....................] - ETA: 1s - loss: -17182876.8065 - acc: 0.4461
2720/7412 [==========>...................] - ETA: 1s - loss: -17115984.6176 - acc: 0.4460
2880/7412 [==========>...................] - ETA: 1s - loss: -17115818.8611 - acc: 0.4459
3120/7412 [===========>..................] - ETA: 1s - loss: -17123591.0256 - acc: 0.4459
3280/7412 [============>.................] - ETA: 1s - loss: -17114971.6585 - acc: 0.4459
3440/7412 [============>.................] - ETA: 1s - loss: -17072177.0698 - acc: 0.4462
3600/7412 [=============>................] - ETA: 1s - loss: -17025446.1333 - acc: 0.4460
3840/7412 [==============>...............] - ETA: 1s - loss: -16969630.0625 - acc: 0.4462
4080/7412 [===============>..............] - ETA: 1s - loss: -16961362.9608 - acc: 0.4461
4320/7412 [================>.............] - ETA: 0s - loss: -16969639.5000 - acc: 0.4461
4480/7412 [=================>............] - ETA: 0s - loss: -16946814.6964 - acc: 0.4462
4640/7412 [=================>............] - ETA: 0s - loss: -16941803.2586 - acc: 0.4461
4880/7412 [==================>...........] - ETA: 0s - loss: -16915578.2623 - acc: 0.4462
5040/7412 [===================>..........] - ETA: 0s - loss: -16916479.5714 - acc: 0.4464
5200/7412 [====================>.........] - ETA: 0s - loss: -16896774.5846 - acc: 0.4463
5360/7412 [====================>.........] - ETA: 0s - loss: -16956822.5075 - acc: 0.4462
5600/7412 [=====================>........] - ETA: 0s - loss: -17015829.3286 - acc: 0.4461
5760/7412 [======================>.......] - ETA: 0s - loss: -17024089.8750 - acc: 0.4460
5920/7412 [======================>.......] - ETA: 0s - loss: -17034422.1216 - acc: 0.4462
6160/7412 [=======================>......] - ETA: 0s - loss: -17042738.7273 - acc: 0.4462
6320/7412 [========================>.....] - ETA: 0s - loss: -17041053.0886 - acc: 0.4462
6480/7412 [=========================>....] - ETA: 0s - loss: -17046979.9012 - acc: 0.4461
6640/7412 [=========================>....] - ETA: 0s - loss: -17041165.7590 - acc: 0.4461
6800/7412 [==========================>...] - ETA: 0s - loss: -17070702.2824 - acc: 0.4460
7040/7412 [===========================>..] - ETA: 0s - loss: -17031330.6364 - acc: 0.4460
7280/7412 [============================>.] - ETA: 0s - loss: -17027056.8132 - acc: 0.4461
7412/7412 [==============================] - 3s 363us/step - loss: -17015624.9908 - acc: 0.4462 - val_loss: -26101260.3556 - val_acc: 0.4473
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 48) 0
_________________________________________________________________
dense_1 (Dense) (None, 30) 1470
_________________________________________________________________
dense_2 (Dense) (None, 20) 620
_________________________________________________________________
dense_3 (Dense) (None, 10) 210
_________________________________________________________________
dense_4 (Dense) (None, 20) 220
_________________________________________________________________
dense_5 (Dense) (None, 30) 630
_________________________________________________________________
dense_6 (Dense) (None, 48) 1488
=================================================================
Total params: 4,638
Trainable params: 4,638
Non-trainable params: 0
_________________________________________________________________
None