Even with the framepointer optimized out, stackframes are often distinguishable by looking through stack memory for saved return addresses instead. Remember that a function call sequence in x86 always consists of:
call someFunc ; pushes return address (instr. following `call`)
...
someFunc:
push EBP ; if framepointer is used
mov EBP, ESP ; if framepointer is used
push <nonvolatile regs>
...
so your stack will always - even if the framepointers are missing - have return addresses in there.
How do you recognize a return address ?
- to start with, on x86, instruction have different lengths. That means return addresses - unlike other pointers (!) - tend to be misaligned values. Statistically 3/4 of them end not at a multiple of four.
Any misaligned pointer is a good candidate for a return address.
- then, remember that
call
instructions on x86 have specific opcode formats; read a few bytes before the return address and check if you find a call
opcode there (99% most of the time, it's five bytes back for a direct call, and three bytes back for a call through a register). If so, you've found a return address.
This is also a way to distinguish C++ vtables from return addresses by the way - vtable entrypoints you'll find on the stack, but looking "back" from those addresses you don't find call
instructions.
With that method, you can get candidates for the call sequence out of the stack even without having symbols, framesize debugging information or anything.
The details of how to piece the actual call sequence together from those candidates are less straightforward though, you need a disassembler and some heuristics to trace potential call flows from the lowest-found return address all the way up to the last known program location. Maybe one day I'll blog about it ;-) though at this point I'd rather say that the margin of a stackoverflow posting is too small to contain this ...
-fomit-frame-pointer
; also, lazy people use a debugger instead of meditating over the raw data... – Christoph