sparkDF = sqlContext.read.format('com.databricks.spark.csv').options(header='true').load('PR_DATA_35.csv')
ERROR_ ---------------------------------------------------------------------------------------------------------------------------------------------------- Py4JJavaError Traceback (most recent call last) in () ----> 1 sparkDF = sqlContext.read.format('com.databricks.spark.csv') .options(header='true').load('PR_DATA_35.csv')
/home/ec2-user/spark/python/pyspark/sql/readwriter.pyc in load(self, path, format, schema, **options) 157 self.options(**options) 158 if isinstance(path, basestring): --> 159 return self._df(self._jreader.load(path)) 160 elif path is not None: 161 if type(path) != list:
/home/ec2-user/spark/python/lib/py4j-0.10.4-src.zip/py4j/java_gateway.py in call(self, *args) 1131 answer = self.gateway_client.send_command(command) 1132 return_value = get_return_value( -> 1133 answer, self.gateway_client, self.target_id, self.name) 1134 1135 for temp_arg in temp_args:
/home/ec2-user/spark/python/pyspark/sql/utils.pyc in deco(*a, **kw) 61 def deco(*a, **kw): 62 try: ---> 63 return f(*a, **kw) 64 except py4j.protocol.Py4JJavaError as e: 65 s = e.java_exception.toString()
/home/ec2-user/spark/python/lib/py4j-0.10.4-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name) 317 raise Py4JJavaError( 318 "An error occurred while calling {0}{1}{2}.\n". --> 319 format(target_id, ".", name), value) 320 else: 321 raise Py4JError(
Py4JJavaError: An error occurred while calling o312.load. : org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 5.0 failed 4 times, most recent failure: Lost task 0.3 in stage 5.0 (TID 23, 172.31.17.233, executor 0): java.io.FileNotFoundException: File file:/home/ec2-user/PR_DATA_35.csv does not exist It is possible the underlying files have been updated. You can explicitly invalidate the cache in Spark by running 'REFRESH TABLE tableName' command in SQL or by recreating the Dataset/DataFrame involved. at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.org$apache$spark$sql$execution$datasources$FileScanRDD$$anon$$readCurrentFile(FileScanRDD.scala:127) at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:174) at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:105) at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source) at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:395) at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:234) at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:228) at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:827) at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:827) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) at org.apache.spark.scheduler.Task.run(Task.scala:108) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748)
Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1499) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1487) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1486) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1486) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814) at scala.Option.foreach(Option.scala:257) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:814) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1714) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1669) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1658) at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:630) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2022) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2043) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2062) at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:336) at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38) at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:2853) at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2153) at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2153) at org.apache.spark.sql.Dataset$$anonfun$55.apply(Dataset.scala:2837) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:65) at org.apache.spark.sql.Dataset.withAction(Dataset.scala:2836) at org.apache.spark.sql.Dataset.head(Dataset.scala:2153) at org.apache.spark.sql.Dataset.take(Dataset.scala:2366) at org.apache.spark.sql.execution.datasources.csv.TextInputCSVDataSource$.infer(CSVDataSource.scala:147) at org.apache.spark.sql.execution.datasources.csv.CSVDataSource.inferSchema(CSVDataSource.scala:62) at org.apache.spark.sql.execution.datasources.csv.CSVFileFormat.inferSchema(CSVFileFormat.scala:57) at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$7.apply(DataSource.scala:177) at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$7.apply(DataSource.scala:177) at scala.Option.orElse(Option.scala:289) at org.apache.spark.sql.execution.datasources.DataSource.getOrInferFileFormatSchema(DataSource.scala:176) at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:366) at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:178) at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:156) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) at py4j.Gateway.invoke(Gateway.java:280) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.GatewayConnection.run(GatewayConnection.java:214) at java.lang.Thread.run(Thread.java:748) Caused by: java.io.FileNotFoundException: File file:/home/ec2-user/PR_DATA_35.csv does not exist It is possible the underlying files have been updated. You can explicitly invalidate the cache in Spark by running 'REFRESH TABLE tableName' command in SQL or by recreating the Dataset/DataFrame involved. at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.org$apache$spark$sql$execution$datasources$FileScanRDD$$anon$$readCurrentFile(FileScanRDD.scala:127) at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:174) at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:105) at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source) at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:395) at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:234) at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:228) at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:827) at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:827) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) at org.apache.spark.scheduler.Task.run(Task.scala:108) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) ... 1 more
Any help is appreciated. Thanks
FileNotFound
exception, is'/home/ec2- user/PR_DATA_35.csv'
correct? There is an extra space in the path, is it a typo or? – mkaranjar
forcom.databricks.spark.csv
(even though that would throw a ClassNotFound Exception)? You said it works with pandas, I assume locally, where does the spark code run? Is it local also? – mkaran