[Code is updated and does not correspond to error messages anymore]
I am trying to understand how JAGS predicts outcome values (for a mixed markov model). I've trained the model on a dataset which includes outcome m
and covariates x1
, x2
and x3
.
Predicting the outcome without fixing parameter values works in R, but the output seems completely random:
preds <- run.jags("model.txt",
data=list(x1=x1, x2=x2, x3=x3, m=m,
statealpha=rep(1,times=M), M=M, T=T, N=N), monitor=c("m_pred"),
n.chains=1, inits = NA, sample=1)
Compiling rjags model... Calling the simulation using the rjags method... Note: the model did not require adaptation Burning in the model for 4000 iterations... |**************************************************| 100% Running the model for 1 iterations... Simulation complete Finished running the simulation
However, as soon as I try to fix parameters (i.e. use model estimates to predict outcome m
, I get errors:
preds <- run.jags("model.txt",
data=list(x1=x1, x2=x2, x3=x3,
statealpha=rep(1,times=M), M=M, T=T, N=N, beta1=beta1), monitor=c("m"),
n.chains=1, inits = NA, sample=1)
Compiling rjags model... Error: The following error occured when compiling and adapting the model using rjags: Error in rjags::jags.model(model, data = dataenv, n.chains = length(runjags.object$end.state), : RUNTIME ERROR: Compilation error on line 39. beta1[2,1] is a logical node and cannot be observed
beta1
in this case is a 2x2 matrix of coefficient estimates.
- How is JAGS predicting
m
in the first example (no fixed parameters)? Is it just completely randomly choosingm
? - How can I include earlier acquired model estimates to simulate new outcome values?
The model is:
model{
for (i in 1:N)
{
for (t in 1:T)
{
m[t,i] ~ dcat(ps[i,t,])
}
for (state in 1:M)
{
ps[i,1,state] <- probs1[state]
for (t in 2:T)
{
ps[i,t,state] <- probs[m[(t-1),i], state, i,t]
}
for (prev in 1:M){
for (t in 1:T) {
probs[prev,state,i,t] <- odds[prev,state,i,t]/totalodds[prev,i,t]
odds[prev,state,i,t] <- exp(alpha[prev,state,i] +
beta1[prev,state]*x1[t,i]
+ beta2[prev,state]*x2[t,i]
+ beta3[prev,state]*x3[t,i])
}}
alpha[state,state,i] <- 0
for (t in 1:T) {
totalodds[state,i,t] <- odds[state,1,i,t] + odds[state,2,i,t]
}
}
alpha[1,2,i] <- raneffs[i,1]
alpha[2,1,i] <- raneffs[i,2]
raneffs[i,1:2] ~ dmnorm(alpha.means[1:2],alpha.prec[1:2, 1:2])
}
for (state in 1:M)
{
beta1[state,state] <- 0
beta2[state,state] <- 0
beta3[state,state] <- 0
}
beta1[1,2] <- rcoeff[1]
beta1[2,1] <- rcoeff[2]
beta2[1,2] <- rcoeff[3]
beta2[2,1] <- rcoeff[4]
beta3[1,2] <- rcoeff[5]
beta3[2,1] <- rcoeff[6]
alpha.Sigma[1:2,1:2] <- inverse(alpha.prec[1:2,1:2])
probs1[1:M] ~ ddirich(statealpha[1:M])
for (par in 1:6)
{
alpha.means[par] ~ dt(T.constant.mu,T.constant.tau,T.constant.k)
rcoeff[par] ~ dt(T.mu, T.tau, T.k)
}
T.constant.mu <- 0
T.mu <- 0
T.constant.tau <- 1/T.constant.scale.squared
T.tau <- 1/T.scale.squared
T.constant.scale.squared <- T.constant.scale*T.constant.scale
T.scale.squared <- T.scale*T.scale
T.scale <- 2.5
T.constant.scale <- 10
T.constant.k <- 1
T.k <- 1
alpha.prec[1:2,1:2] ~ dwish(Om[1:2,1:2],2)
Om[1,1] <- 1
Om[1,2] <- 0
Om[2,1] <- 0
Om[2,2] <- 1
## Prediction
for (i in 1:N)
{
m_pred[1,i] <- m[1,i]
for (t in 2:T)
{
m_pred[t,i] ~ dcat(ps_pred[i,t,])
}
for (state in 1:M)
{
ps_pred[i,1,state] <- probs1[state]
for (t in 2:T)
{
ps_pred[i,t,state] <- probs_pred[m_pred[(t-1),i], state, i,t]
}
for (prev in 1:M)
{
for (t in 1:T)
{
probs_pred[prev,state,i,t] <- odds_pred[prev,state,i,t]/totalodds_pred[prev,i,t]
odds_pred[prev,state,i,t] <- exp(alpha[prev,state,i] +
beta1[prev,state]*x1[t,i]
+ beta2[prev,state]*x2[t,i]
+ beta3[prev,state]*x3[t,i])
}}
for (t in 1:T) {
totalodds_pred[state,i,t] <- odds_pred[state,1,i,t] + odds_pred[state,2,i,t]
}
}
}