a not intended to be really executed program
bootstrap
.globl _start
_start:
bl one
b .
first c file
extern unsigned int hello;
unsigned int one ( void )
{
return(hello+5);
}
second c file (being extern forces the compiler to compile the first object in a certain way)
unsigned int hello;
linker script
MEMORY
{
ram : ORIGIN = 0x00001000, LENGTH = 0x4000
}
SECTIONS
{
.text : { *(.text*) } > ram
.bss : { *(.bss*) } > ram
}
building position dependent
Disassembly of section .text:
00001000 <_start>:
1000: eb000000 bl 1008 <one>
1004: eafffffe b 1004 <_start+0x4>
00001008 <one>:
1008: e59f3008 ldr r3, [pc, #8] ; 1018 <one+0x10>
100c: e5930000 ldr r0, [r3]
1010: e2800005 add r0, r0, #5
1014: e12fff1e bx lr
1018: 0000101c andeq r1, r0, r12, lsl r0
Disassembly of section .bss:
0000101c <hello>:
101c: 00000000 andeq r0, r0, r0
the key here is at address 0x1018 the compiler had to leave a placeholder for the address to the external item. shown as offset 0x10 below
00000000 <one>:
0: e59f3008 ldr r3, [pc, #8] ; 10 <one+0x10>
4: e5930000 ldr r0, [r3]
8: e2800005 add r0, r0, #5
c: e12fff1e bx lr
10: 00000000 andeq r0, r0, r0
The linker fills this in at link time. You can see in the disassembly above that position dependent it fills in the absolute address of where to find that item. For this code to work the code must be loaded in a way that that item shows up at that address. It has to be loaded at a specific position or address in memory. Position dependent. (loaded at address 0x1000 basically).
If your toolchain supports position independent (gnu does) then this represents a solution.
Disassembly of section .text:
00001000 <_start>:
1000: eb000000 bl 1008 <one>
1004: eafffffe b 1004 <_start+0x4>
00001008 <one>:
1008: e59f3014 ldr r3, [pc, #20] ; 1024 <one+0x1c>
100c: e59f2014 ldr r2, [pc, #20] ; 1028 <one+0x20>
1010: e08f3003 add r3, pc, r3
1014: e7933002 ldr r3, [r3, r2]
1018: e5930000 ldr r0, [r3]
101c: e2800005 add r0, r0, #5
1020: e12fff1e bx lr
1024: 00000014 andeq r0, r0, r4, lsl r0
1028: 00000000 andeq r0, r0, r0
Disassembly of section .got:
0000102c <.got>:
102c: 0000103c andeq r1, r0, r12, lsr r0
Disassembly of section .got.plt:
00001030 <_GLOBAL_OFFSET_TABLE_>:
...
Disassembly of section .bss:
0000103c <hello>:
103c: 00000000 andeq r0, r0, r0
It has a performance hit of course, but instead of the compiler and linker working together by leaving one location, there is now a table, global offset table (for this solution) that is at a known location which is position relative to the code, that contains linker supplied offsets.
The program is not position independent yet, it will certainly not work if you load it anywhere. The loader has to patch up the table/solution based on where it wants to place the items. This is far simpler than having a very long list of each of the locations to patch in the first solution, although that would have been a very possible way to do it. A table in the executable (executables contain more than the program and data they have other items of information as you know if you objdump or readelf an elf file) could contain all of those offsets and the loader could patch those up too.
If your data and bss and other memory sections are fixed relative to .text as I have built here, then a got wasnt necessary the linker could have at link time computed the relative offset to the resource and along with the compiler found the item in an position independent way, and the binary could have been loaded just about anywhere (some minimum alignment may hav been required) and it would work without any patching. With the gnu solution I think you can move the segments relative to each other.
It is incorrect to state that the kernel will or would always randomize your location if built position independent. While possible so long as the toolchain and the loader from the operating system (a completely separate development) work hand in hand, the loader has the opportunity. But that does not in any way mean that every loader does or will. Specific operating systems/distros/versions may have that set as a default yes. If they come across a binary that is position independent (built in a way that loader expects). It is like saying all mechanics on the planet will use a specific brand and type of oil if you show up in their garage with a specific brand of car. A specific mechanic may always use a specific oil brand and type for a specific car, but that doesnt mean all mechanics will or perhaps even can obtain that specific oil brand or type. If that individual business chooses to as a policy then you as a customer can start to form an assumption that that is what you will get (with that assumption then failing when they change their policy).
As far as disassembly you can statically disassemble your project at build time or whenever. If loaded at a different position then there will be an offset to what you are seeing, but the .text code will still be in the same place relative to other code in that segment. If the static disassembly shows a call being 0x104 bytes ahead, then even if loaded somewhere else you should see that relative jump also be 0x104 bytes ahead, the addresses may be different.
Then there is the debugger part of this, for the debugger to work/show the correct information it also has to be part of the toolchain/loader(/os) team for everything to work/look right. It has to know this was position independent and have to know where it was loaded and/or the debugger is doing the loading for you and may not use the standard OS loader in the same way that a command line or gui does. So you might still see the binary in the same place every time when using the debugger.
The main bug here was your expectation. First operating systems like windows, linux, etc desire to use an MMU to allow them to manage memory better. To pick some/many non-linear blocks of physical memory and create a linear area of virtual memory for your program to live, more importantly the virtual address space for each separate program can look the same, I can have every program load at 0x8000 in virtual address space, without interfering with each other, with an MMU designed for this and an operating system that takes advantage of this. Even with this MMU and operating system and position independent loading one would hope they are not using physical addresses, they are still creating a virtual address space, just possibly with different load points for each program or each instance of a program. Expecting all operating systems to do this all the time is an expectation problem. And when using a debugger you are not in a stock environment, the program runs differently, can be loaded differently, etc. It is not the same as running without the debugger, so using a debugger also changes what you should expect to see happen. Two levels of expectation here to deal with.
Use an external component in a very simple program as I made above, see in the disassembly of the object that it has built for position independence as well as in the linking then try Linux as Peter has indicated and see if it loads in a different place each time, if not then you need to be looking at superuser SE or google around about how to use linux (and/or gdb) to get it to change the load location.