I have a dataset from a biological experiment:
x = c(0.488, 0.977, 1.953, 3.906, 7.812, 15.625, 31.250, 62.500, 125.000, 250.000, 500.000, 1000.000)
y = c(0.933, 1.036, 1.112, 1.627, 2.646, 5.366, 11.115, 2.355, 1.266, 0, 0, 0)
plot(log(x),y)
x represents a concentration and y represents the response in our assay.
The plot can be found here: 1
How can I predict the x-value (concentration) of a pre-defined y-value (in my case 1.5)?
After a loess smoothing I can predict the y-value at a defined x-value. See the example:
smooth_data <- loess(y~log(x))
predict(smooth_data, 1.07) # which gives 1.5
Using the predict function, both x = 1.07 and x = 5.185 result in y = 1.5
Is there a convenient way to get the estimates from the loess regression at y = 1.5 without manually typing some x values into the predict function?
Any suggestions?