There are a few flavors how to process SIFT corner detection in this case:
- process single image per unit/time one core;
- multiprocess 2 or more images /unit time on single core;
- multiprocess 2 or more images/unit time on multiple cores.
Read cores as either cpu or gpu. Threading result in serial processing instead of parallel.
As stated Rebecca has at least 32gb internal memory on her PC at her disposal which is more than sufficient for option 1 to process at once.
So in that light.. splitting a single image as suggested by Martin... should be a last resort in my opinion.
Why should you avoid splitting a single image in multiple windows during feature detection (w/o running out of memory)?
Answer:
If a corner is located at the spilt-side of the window and thus becomes unwillingly two more or less polygonal straight-line-like shapes you won't find the corner you're looking for, unless you got a specialized algorithm to search for those anomalies.
In casu:
In Rebecca's case its crucial to know which approach she took on processing the image(s)... Was it one, two, or many more images loaded simultaneously into memory?
If hundreds or thousands of images are simultaneously loaded into memory... you're basically choking the system by taking away its breathing space (in the form of free memory). In addition, we're not talking about other programs that are loaded into memory and claim (reserve) or consume memory space for various background programs. That comes on top of the issue at hand.
Overthinking:
If as suggested by Martin there is an issue with the Opencv lib in handling such amount of images as described by Rebecca.. do some debugging and then report your findings to Opencv, post a question here at SO as she did... but post also code that shows how you deal with the image processing at the start; as explained above why that is important. And yes as Martin stated... don't post wrappers... totally pointless to do so. A referral link to it (with possible version number) is more than enough... or a tag ;-)