I have a data set called value that have four variables (ER is the dependent variable) and 400 observations (after removing N/A). I tried to divide the dataset into training and test sets and train the model using linear regression in the caret package. But I always get the errors:
In lm.fit(x, y, offset = offset, singular.ok = singular.ok, ... :
extra argument ‘trcontrol’ is disregarded.
Below is my code:
ctrl_lm <- trainControl(method = "cv", number = 5, verboseIter = FALSE)
value_rm = na.omit(value)
set.seed(1)
datasplit <- createDataPartition(y = value_rm[[1]], p = 0.8, list = FALSE)
train.value <- value_rm[datasplit,]
test.value <- value_rm[-datasplit,]
lmCVFit <- train(ER~., data = train.value, method = "lm",
trcontrol = ctrl_lm, metric = "Rsquared")
predictedVal <- predict(lmCVFit, test.value)
modelvalues <- data.frame(obs = test.value$ER, pred = predictedVal)
lmcv.out = defaultSummary(modelvalues)