1)
1a and 1b both estimate the same model: The intercept left out in 1b is "replaced" by a dummy, i.e. the first dummy variable in 1b catches what the intercept catches in 1a.
The F test for joint significance of the regressors is performed without the intercept. For model 1b, there is no way for plm to detect that you left out the intercept and replaced it by a dummy variable, hence the dummy variable is counted as a "regular" regressor. Here is a code example:
library("plm")
data("Grunfeld", package = "plm")
fe1 <- plm(inv ~ value + capital, data = Grunfeld, model = "within")
fe2 <- plm(inv ~ value + capital + factor(firm), data = Grunfeld, model = "pooling")
fe3 <- plm(inv ~ value + capital + factor(firm) - 1, data = Grunfeld, model = "pooling")
summary(fe1)$fstatistic
summary(fe2)$fstatistic
summary(fe3)$fstatistic
2)
This is rather a question about statistics:
There is +1 due to the whole dummy coding concept: You cannot have a dummy for all individuals and for all time periods in the same model as that would cause linear dependence. You need to drop one of the dummy variables for the individuals or for the time periods. Here is a code example which shows there is no dummy for the first individual (firm = 1):
library("plm")
data("Grunfeld", package = "plm")
fe4 <- plm(inv ~ value + capital + factor(firm) + factor(year), data = Grunfeld, model = "pooling")
summary(fe4)
### [...]
### Coefficients:
### Estimate Std. Error t-value Pr(>|t|)
### (Intercept) -86.900230 56.046633 -1.5505 0.1228925
### value 0.117716 0.013751 8.5604 6.653e-15 ***
### capital 0.357916 0.022719 15.7540 < 2.2e-16 ***
### factor(firm)2 207.054240 35.172748 5.8868 2.067e-08 ***
### factor(firm)3 -135.230800 35.708975 -3.7870 0.0002116 ***
### factor(firm)4 95.353842 50.722116 1.8799 0.0618390 .
### factor(firm)5 -5.438595 57.830520 -0.0940 0.9251859
### factor(firm)6 102.888642 54.173879 1.8992 0.0592379 .
### factor(firm)7 51.466610 58.179220 0.8846 0.3776174
### factor(firm)8 67.490515 50.970927 1.3241 0.1872585
### factor(firm)9 30.217556 55.723069 0.5423 0.5883394
### factor(firm)10 126.837123 58.525451 2.1672 0.0316183 *
### factor(year)1936 -19.197405 23.675862 -0.8108 0.4185963
### factor(year)1937 -40.690009 24.695410 -1.6477 0.1012774
### factor(year)1938 -39.226404 23.235936 -1.6882 0.0932215 .
### factor(year)1939 -69.470288 23.656074 -2.9367 0.0037802 **
### factor(year)1940 -44.235085 23.809795 -1.8579 0.0649297 .
### factor(year)1941 -18.804463 23.694000 -0.7936 0.4285190
### factor(year)1942 -21.139792 23.381630 -0.9041 0.3672189
### factor(year)1943 -42.977623 23.552866 -1.8247 0.0698076 .
### factor(year)1944 -43.098772 23.610197 -1.8254 0.0697014 .
### factor(year)1945 -55.683040 23.895615 -2.3303 0.0209739 *
### factor(year)1946 -31.169284 24.115984 -1.2925 0.1979574
### factor(year)1947 -39.392242 23.783682 -1.6563 0.0995223 .
### factor(year)1948 -43.716514 23.969654 -1.8238 0.0699446 .
### factor(year)1949 -73.495099 24.182919 -3.0391 0.0027500 **
### factor(year)1950 -75.896112 24.345526 -3.1175 0.0021445 **
### factor(year)1951 -62.480912 24.864254 -2.5129 0.0129115 *
### factor(year)1952 -64.632341 25.349502 -2.5496 0.0116721 *
### factor(year)1953 -67.717966 26.611085 -2.5447 0.0118315 *
### factor(year)1954 -93.526221 27.107864 -3.4502 0.0007076 ***
### [...]