0
votes

I am playing around with some graph theory algorithms in neo4j. I am trying to find the minimum spanning tree (mst) within my network. I synthetically created a network of 10 000 people. Each person has 12 relationship types each one linking him back to the other 9999 and each relationship with its own weight assigned.

The problem I have however is the fact that according to the definition the results must be a tree spanning over the ENTIRE network. The neo4j function however only returns a very small sub-graph (only about 12 nodes) of the entire network.

The code I am using looks like this:

MATCH (a:Name {Name:"Dillon Snow"})
CALL algo.mst(a,"Weight",{stats:true})
YIELD loadMillis, computeMillis, writeMillis, weightSum, weightMin, weightMax, relationshipCount
RETURN loadMillis, computeMillis, writeMillis, weightSum, weightMin, weightMax, relationshipCount

What can I change to get the function to return the mst spreading through the entire network

1

1 Answers

0
votes

algo.mst.* has not been adapted to the matured Neo4j-Graph-Algorithms-CoreAPI in its current release (3.2.5.2/3.3.0.0 @ Dec 2017) which might lead to unexpected results. But there is a pull request in the pipe, you can expect some changes in the next release.

Anyway.. The procedure should add a new relationship-type (default mst) to your nodes. In a connected graph each node should be connected as well while a disconnected graph leads to connections only between the nodes of this particular connected component (from your startNode).

If i understand you right you have multiple relationship types and more then one of them between a pair of nodes? E.g. Node A is connected to Node B with several relations, each of them with a different type and property value. This is a problem. In general the Graph-Algorithms-API does not support multible releationships. Each pair of nodes can only have one connection per direction. Although you can import multible types the core-api itself has no idea of the underlying type. If multible relationships between a pair of nodes get imported usualy the last one wins. This has been mentioned in the documentation ;)

To overcome this limitation you could replace your relationship types with some kind of artificial nodes. When traversing over the result tree the occurence of one of those nodes would indicate the original relationship.