I'm writing a program for matrix multiplication with OpenMP, that, for cache convenience, implements the multiplication A x B(transpose) rows X rows instead of the classic A x B rows x columns, for better cache efficiency. Doing this I faced an interesting fact that for me is illogic: if in this code i parallelize the extern loop the program is slower than if I put the OpenMP directives in the most inner loop, in my computer the times are 10.9 vs 8.1 seconds.
//A and B are double* allocated with malloc, Nu is the lenght of the matrixes
//which are square
//#pragma omp parallel for
for (i=0; i<Nu; i++){
for (j=0; j<Nu; j++){
*(C+(i*Nu+j)) = 0.;
#pragma omp parallel for
for(k=0;k<Nu ;k++){
*(C+(i*Nu+j))+=*(A+(i*Nu+k)) * *(B+(j*Nu+k));//C(i,j)=sum(over k) A(i,k)*B(k,j)
}
}
}
'fortran'
memory layout for theB
matrix runs 4-8 faster (the greatest benefit) for 1000x1000 matrices (threaded version takes0.5
seconds). gist.github.com/790865 – jfs