This question is now the first item in either Bing or Google when you search for "determine convex polygon." However, none of the answers are good enough.
The (now deleted) answer by @EugeneYokota works by checking whether an unordered set of points can be made into a convex polygon, but that's not what the OP asked for. He asked for a method to check whether a given polygon is convex or not. (A "polygon" in computer science is usually defined [as in the XFillPolygon documentation] as an ordered array of 2D points, with consecutive points joined with a side as well as the last point to the first.) Also, the gift wrapping algorithm in this case would have the time-complexity of O(n^2)
for n
points - which is much larger than actually needed to solve this problem, while the question asks for an efficient algorithm.
@JasonS's answer, along with the other answers that follow his idea, accepts star polygons such as a pentagram or the one in @zenna's comment, but star polygons are not considered to be convex. As
@plasmacel notes in a comment, this is a good approach to use if you have prior knowledge that the polygon is not self-intersecting, but it can fail if you do not have that knowledge.
@Sekhat's answer is correct but it also has the time-complexity of O(n^2)
and thus is inefficient.
@LorenPechtel's added answer after her edit is the best one here but it is vague.
A correct algorithm with optimal complexity
The algorithm I present here has the time-complexity of O(n)
, correctly tests whether a polygon is convex or not, and passes all the tests I have thrown at it. The idea is to traverse the sides of the polygon, noting the direction of each side and the signed change of direction between consecutive sides. "Signed" here means left-ward is positive and right-ward is negative (or the reverse) and straight-ahead is zero. Those angles are normalized to be between minus-pi (exclusive) and pi (inclusive). Summing all these direction-change angles (a.k.a the deflection angles) together will result in plus-or-minus one turn (i.e. 360 degrees) for a convex polygon, while a star-like polygon (or a self-intersecting loop) will have a different sum ( n * 360 degrees, for n turns overall, for polygons where all the deflection angles are of the same sign). So we must check that the sum of the direction-change angles is plus-or-minus one turn. We also check that the direction-change angles are all positive or all negative and not reverses (pi radians), all points are actual 2D points, and that no consecutive vertices are identical. (That last point is debatable--you may want to allow repeated vertices but I prefer to prohibit them.) The combination of those checks catches all convex and non-convex polygons.
Here is code for Python 3 that implements the algorithm and includes some minor efficiencies. The code looks longer than it really is due to the the comment lines and the bookkeeping involved in avoiding repeated point accesses.
TWO_PI = 2 * pi
def is_convex_polygon(polygon):
"""Return True if the polynomial defined by the sequence of 2D
points is 'strictly convex': points are valid, side lengths non-
zero, interior angles are strictly between zero and a straight
angle, and the polygon does not intersect itself.
NOTES: 1. Algorithm: the signed changes of the direction angles
from one side to the next side must be all positive or
all negative, and their sum must equal plus-or-minus
one full turn (2 pi radians). Also check for too few,
invalid, or repeated points.
2. No check is explicitly done for zero internal angles
(180 degree direction-change angle) as this is covered
in other ways, including the `n < 3` check.
"""
try: # needed for any bad points or direction changes
# Check for too few points
if len(polygon) < 3:
return False
# Get starting information
old_x, old_y = polygon[-2]
new_x, new_y = polygon[-1]
new_direction = atan2(new_y - old_y, new_x - old_x)
angle_sum = 0.0
# Check each point (the side ending there, its angle) and accum. angles
for ndx, newpoint in enumerate(polygon):
# Update point coordinates and side directions, check side length
old_x, old_y, old_direction = new_x, new_y, new_direction
new_x, new_y = newpoint
new_direction = atan2(new_y - old_y, new_x - old_x)
if old_x == new_x and old_y == new_y:
return False # repeated consecutive points
# Calculate & check the normalized direction-change angle
angle = new_direction - old_direction
if angle <= -pi:
angle += TWO_PI # make it in half-open interval (-Pi, Pi]
elif angle > pi:
angle -= TWO_PI
if ndx == 0: # if first time through loop, initialize orientation
if angle == 0.0:
return False
orientation = 1.0 if angle > 0.0 else -1.0
else: # if other time through loop, check orientation is stable
if orientation * angle <= 0.0: # not both pos. or both neg.
return False
# Accumulate the direction-change angle
angle_sum += angle
# Check that the total number of full turns is plus-or-minus 1
return abs(round(angle_sum / TWO_PI)) == 1
except (ArithmeticError, TypeError, ValueError):
return False # any exception means not a proper convex polygon