How to create a new integer column recode
which recodes for an existing column y
in the dataframe df
using dplyr
approaches?
# Generates Random data
df <- data.frame(x = sample(1:100, 50),
y = sample(LETTERS, 50, replace = TRUE),
stringsAsFactors = FALSE)
# Structure of the data
str(df)
# 'data.frame': 50 obs. of 2 variables:
# $ x: int 90 4 33 85 30 19 78 77 7 10 ...
# $ y: chr "N" "B" "P" "W" ...
# Making the character vector as factor variable
df$y <- factor(df$y)
# Structure of the data to llok at the effect of factor creation
str(df)
# 'data.frame': 50 obs. of 2 variables:
# $ x: int 90 4 33 85 30 19 78 77 7 10 ...
# $ y: Factor w/ 23 levels "A","B","C","E",..: 12 2 14 21 12 22 7 1 6 17 ...
# collecting the levels of the factor variable
labs <- levels(df$y)
# Recode the levels to sequential integers
recode <- 1:length(labs)
# Creates the recode dataframe
dfrecode <- data.frame(labs, recode)
# Mapping the recodes to the original data
df$recode <- dfrecode[match(df$y, dfrecode$labs), 'recode']
This code works as expected. But I want to replace this approach with a dplyr or other efficient approaches. I can achieve the same using this approach if I know all the values. But I would like to do this without seeing or explicitly listing the values present in the column
dplyr::recode()
? – RobertMylesdplyr::recode()
function? – Prradepfct_anon
from theforcats
package can be useful? – amarchinas.numeric(df$y)
? – Nate