It's a bit surprising that you have a boolean flag to indicate what is a leaf. In the nature of graphs it would seem logical to assume a leaf is any vertex with out-degree of 0.
Regardless:
Live On Coliru
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/filtered_graph.hpp>
#include <boost/graph/graph_utility.hpp>
/// vertex properties
struct VertexData {
std::string label;
int num;
bool is_leaf=false;
};
/// edges properties
struct EdgeData {
std::string edge_name;
double edge_confidence;
};
/// define the boost-graph
typedef boost::adjacency_list<boost::vecS, boost::vecS,
boost::bidirectionalS,
boost::property<boost::vertex_index_t, size_t, VertexData>,
boost::property<boost::edge_weight_t, double, EdgeData> > Graph;
using Predicate = std::function<bool(Graph::vertex_descriptor)>;
using Filtered = boost::filtered_graph<Graph, boost::keep_all, Predicate>;
Graph make_graph();
int main() {
Graph g = make_graph();
auto const labels = get(&VertexData::label, g);
std::cout << "\n---Main graph:\n";
print_graph(g, labels);
// manual markings
{
auto manual_is_leaf = [&g](Graph::vertex_descriptor vd) { return !g[vd].is_leaf; };
Filtered manual(g, boost::keep_all{}, manual_is_leaf);
{
std::cout << "\n---Filtered, no leafs:\n";
print_graph(manual, labels);
}
{
std::cout << "\n---Filtered, manual leafs:\n";
g[2].is_leaf = true; // only "three"
print_graph(manual, labels);
}
}
// automatic, dynamic markings
{
// note that for bidirectional/undirected out_degree might not make
// sense, but neither does the notion of a leaf!
auto by_degree = [&g](Graph::vertex_descriptor vd) { return boost::out_degree(vd, g); };
Filtered automatic(g, boost::keep_all{}, by_degree);
{
std::cout << "\n---Filtered by actual out_degree:\n";
print_graph(automatic, labels);
}
{
// make `five` and `six` appear:
add_edge(5, 4, 100, g); // six -> five
std::cout << "\n---After adding an edge:\n";
print_graph(automatic, labels);
}
}
}
Graph make_graph() {
Graph g;
auto v1 = add_vertex({ 1, {"one", 100, false} }, g);
auto v2 = add_vertex({ 2, {"two", 200, false} }, g);
auto v3 = add_vertex({ 3, {"three", 300, false} }, g);
auto v4 = add_vertex({ 4, {"four", 400, false} }, g);
auto v5 = add_vertex({ 5, {"five", 500, false} }, g);
auto v6 = add_vertex({ 6, {"six", 600, false} }, g);
add_edge(v1, v2, 0.5, g);
add_edge(v2, v3, 0.5, g);
add_edge(v3, v4, 0.5, g);
add_edge(v3, v5, 0.5, g);
add_edge(v3, v6, 0.5, g);
add_edge(v2, v4, 0.5, g);
add_edge(v3, v5, 0.5, g);
add_edge(v4, v6, 0.5, g);
return g;
}
Prints
---Main graph:
one --> two
two --> three four
three --> four five six five
four --> six
five -->
six -->
---Filtered, no leafs:
one --> two
two --> three four
three --> four five six five
four --> six
five -->
six -->
---Filtered, manual leafs:
one --> two
two --> four
four --> six
five -->
six -->
---Filtered by actual out_degree:
one --> two
two --> three four
three --> four
four -->
---After adding an edge:
one --> two
two --> three four
three --> four six
four --> six
six -->
NOTE
Replace boost::out_degree
with boost::degree
if you want to be more "true" to the nature of bidirectional/undirected graphs (see the comment). In that case you will see all vertices in the automatic section, because all vertices are connected with some edge.