UPDATED:
i'm building a Neural Network for my final project and i need some help with it.
I'm trying to build a rnn to do sentiment analysis over Spanish text. I have about 200,000 labeled tweets and i vectorized them using a word2vec with a Spanish embedding
Dataset & Vectorization:
- I erased duplicates and split the dataset into training and testing sets.
- Padding, unknown and end of sentence tokens are applied when vectorizing.
- I mapped the @mentions to known names in the word2vec model. Example: @iamthebest => "John"
My model:
- My data tensor has shape = (batch_size, 20, 300).
- I have 3 classes: neutral, positive and negative, so my target tensor has shape = (batch_size, 3)
- I use BasicLstm cells and dynamic rnn to build the net.
- I use Adam Optimizer, and softmax_cross entropy for the loss calculation
- I use a dropout wrapper to decrease the overfitting.
Last run:
- I have tried with different configurations and non of them seem to work.
- Last setup: 2 Layers, 512 batch size, 15 epochs and 0.001 of lr.
Weak points for me:
im worried about the final layer and the handing of the final state in the dynamic_rnn
Code:
# set variables
num_epochs = 15
tweet_size = 20
hidden_size = 200
vec_size = 300
batch_size = 512
number_of_layers= 1
number_of_classes= 3
learning_rate = 0.001
TRAIN_DIR="/checkpoints"
tf.reset_default_graph()
# Create a session
session = tf.Session()
# Inputs placeholders
tweets = tf.placeholder(tf.float32, [None, tweet_size, vec_size], "tweets")
labels = tf.placeholder(tf.float32, [None, number_of_classes], "labels")
# Placeholder for dropout
keep_prob = tf.placeholder(tf.float32)
# make the lstm cells, and wrap them in MultiRNNCell for multiple layers
def lstm_cell():
cell = tf.contrib.rnn.BasicLSTMCell(hidden_size)
return tf.contrib.rnn.DropoutWrapper(cell=cell, output_keep_prob=keep_prob)
multi_lstm_cells = tf.contrib.rnn.MultiRNNCell([lstm_cell() for _ in range(number_of_layers)], state_is_tuple=True)
# Creates a recurrent neural network
outputs, final_state = tf.nn.dynamic_rnn(multi_lstm_cells, tweets, dtype=tf.float32)
with tf.name_scope("final_layer"):
# weight and bias to shape the final layer
W = tf.get_variable("weight_matrix", [hidden_size, number_of_classes], tf.float32, tf.random_normal_initializer(stddev=1.0 / math.sqrt(hidden_size)))
b = tf.get_variable("bias", [number_of_classes], initializer=tf.constant_initializer(1.0))
sentiments = tf.matmul(final_state[-1][-1], W) + b
prob = tf.nn.softmax(sentiments)
tf.summary.histogram('softmax', prob)
with tf.name_scope("loss"):
# define cross entropy loss function
losses = tf.nn.softmax_cross_entropy_with_logits(logits=sentiments, labels=labels)
loss = tf.reduce_mean(losses)
tf.summary.scalar("loss", loss)
with tf.name_scope("accuracy"):
# round our actual probabilities to compute error
accuracy = tf.to_float(tf.equal(tf.argmax(prob,1), tf.argmax(labels,1)))
accuracy = tf.reduce_mean(tf.cast(accuracy, dtype=tf.float32))
tf.summary.scalar("accuracy", accuracy)
# define our optimizer to minimize the loss
with tf.name_scope("train"):
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss)
#tensorboard summaries
merged_summary = tf.summary.merge_all()
logdir = "tensorboard/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S") + "/"
writer = tf.summary.FileWriter(logdir, session.graph)
# initialize any variables
tf.global_variables_initializer().run(session=session)
# Create a saver for writing training checkpoints.
saver = tf.train.Saver()
# load our data and separate it into tweets and labels
train_tweets = np.load('data_es/train_vec_tweets.npy')
train_labels = np.load('data_es/train_vec_labels.npy')
test_tweets = np.load('data_es/test_vec_tweets.npy')
test_labels = np.load('data_es/test_vec_labels.npy')
**HERE I HAVE THE LOOP FOR TRAINING AND TESTING, I KNOW ITS FINE**