Some Bash tricks I use to set variables from commands
Sorry, there is a loong answer, but as bash is a shell, where the main goal is to run other unix commands and react to resut code and/or output, ( commands are often piped filter, etc... ).
Storing command output in variables is something basic and fundamental.
Therefore, depending on
- compatibility (posix)
- kind of output (filter(s))
- number of variable to set (split or interpret)
- execution time (monitoring)
- error trapping
- repeatability of request (see long running background process, further)
- interactivity (considering user input while reading from another input file descriptor)
- do I miss something?
First simple, old, and compatible way
myPi=`echo '4*a(1)' | bc -l`
echo $myPi
3.14159265358979323844
Mostly compatible, second way
As nesting could become heavy, parenthesis was implemented for this
myPi=$(bc -l <<<'4*a(1)')
Nested sample:
SysStarted=$(date -d "$(ps ho lstart 1)" +%s)
echo $SysStarted
1480656334
bash features
Reading more than one variable (with Bashisms)
df -k /
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/dm-0 999320 529020 401488 57% /
If I just want a used value:
array=($(df -k /))
you could see an array variable:
declare -p array
declare -a array='([0]="Filesystem" [1]="1K-blocks" [2]="Used" [3]="Available" [
4]="Use%" [5]="Mounted" [6]="on" [7]="/dev/dm-0" [8]="999320" [9]="529020" [10]=
"401488" [11]="57%" [12]="/")'
Then:
echo ${array[9]}
529020
But I often use this:
{ read -r _;read -r filesystem size using avail prct mountpoint ; } < <(df -k /)
echo $using
529020
The first read foo
will just skip header line, but in only one command, you will populate 7 different variables:
declare -p avail filesystem foo mountpoint prct size using
declare -- avail="401488"
declare -- filesystem="/dev/dm-0"
declare -- foo="Filesystem 1K-blocks Used Available Use% Mounted on"
declare -- mountpoint="/"
declare -- prct="57%"
declare -- size="999320"
declare -- using="529020"
Or
{ read -a head;varnames=(${head[@]//[K1% -]});varnames=(${head[@]//[K1% -]});
read ${varnames[@],,} ; } < <(LANG=C df -k /)
Then:
declare -p varnames ${varnames[@],,}
declare -a varnames=([0]="Filesystem" [1]="blocks" [2]="Used" [3]="Available" [4]="Use" [5]="Mounted" [6]="on")
declare -- filesystem="/dev/dm-0"
declare -- blocks="999320"
declare -- used="529020"
declare -- available="401488"
declare -- use="57%"
declare -- mounted="/"
declare -- on=""
Or even:
{ read foo ; read filesystem dsk[{6,2,9}] prct mountpoint ; } < <(df -k /)
declare -p mountpoint dsk
declare -- mountpoint="/"
declare -a dsk=([2]="529020" [6]="999320" [9]="401488")
(Note Used
and Blocks
is switched there: read ... dsk[6] dsk[2] dsk[9] ...
)
... will work with associative arrays too: read foo disk[total] disk[used] ...
Dedicated fd
using unnamed fifo:
There is an elegent way:
users=()
while IFS=: read -u $list user pass uid gid name home bin ;do
((uid>=500)) &&
printf -v users[uid] "%11d %7d %-20s %s\n" $uid $gid $user $home
done {list}</etc/passwd
Using this way (... read -u $list; ... {list}<inputfile
) leave STDIN
free for other purposes, like user interaction.
Then
echo -n "${users[@]}"
1000 1000 user /home/user
...
65534 65534 nobody /nonexistent
and
echo ${!users[@]}
1000 ... 65534
echo -n "${users[1000]}"
1000 1000 user /home/user
This could be used with static files or even /dev/tcp/xx.xx.xx.xx/yyy
with x
for ip address or hostname and y
for port number:
{
read -u $list -a head # read header in array `head`
varnames=(${head[@]//[K1% -]}) # drop illegal chars for variable names
while read -u $list ${varnames[@],,} ;do
((pct=available*100/(available+used),pct<10)) &&
printf "WARN: FS: %-20s on %-14s %3d <10 (Total: %11u, Use: %7s)\n" \
"${filesystem#*/mapper/}" "$mounted" $pct $blocks "$use"
done
} {list}< <(LANG=C df -k)
And of course with inline documents:
while IFS=\; read -u $list -a myvar ;do
echo ${myvar[2]}
done {list}<<"eof"
foo;bar;baz
alice;bob;charlie
$cherry;$strawberry;$memberberries
eof
Sample function for populating some variables:
#!/bin/bash
declare free=0 total=0 used=0
getDiskStat() {
local foo
{
read foo
read foo total used free foo
} < <(
df -k ${1:-/}
)
}
getDiskStat $1
echo $total $used $free
Nota: declare
line is not required, just for readability.
About sudo cmd | grep ... | cut ...
shell=$(cat /etc/passwd | grep $USER | cut -d : -f 7)
echo $shell
/bin/bash
(Please avoid useless cat
! So this is just one fork less:
shell=$(grep $USER </etc/passwd | cut -d : -f 7)
All pipes (|
) implies forks. Where another process have to be run, accessing disk, libraries calls and so on.
So using sed
for sample, will limit subprocess to only one fork:
shell=$(sed </etc/passwd "s/^$USER:.*://p;d")
echo $shell
And with Bashisms:
But for many actions, mostly on small files, Bash could do the job itself:
while IFS=: read -a line ; do
[ "$line" = "$USER" ] && shell=${line[6]}
done </etc/passwd
echo $shell
/bin/bash
or
while IFS=: read loginname encpass uid gid fullname home shell;do
[ "$loginname" = "$USER" ] && break
done </etc/passwd
echo $shell $loginname ...
Going further about variable splitting...
Have a look at my answer to How do I split a string on a delimiter in Bash?
Alternative: reducing forks by using backgrounded long-running tasks
In order to prevent multiple forks like
myPi=$(bc -l <<<'4*a(1)'
myRay=12
myCirc=$(bc -l <<<" 2 * $myPi * $myRay ")
or
myStarted=$(date -d "$(ps ho lstart 1)" +%s)
mySessStart=$(date -d "$(ps ho lstart $$)" +%s)
This work fine, but running many forks is heavy and slow.
And commands like date
and bc
could make many operations, line by line!!
See:
bc -l <<<$'3*4\n5*6'
12
30
date -f - +%s < <(ps ho lstart 1 $$)
1516030449
1517853288
So we could use a long running background process to make many jobs, without having to initiate a new fork for each request.
Under bash, there is a built-in function: coproc
:
coproc bc -l
echo 4*3 >&${COPROC[1]}
read -u $COPROC answer
echo $answer
12
echo >&${COPROC[1]} 'pi=4*a(1)'
ray=42.0
printf >&${COPROC[1]} '2*pi*%s\n' $ray
read -u $COPROC answer
echo $answer
263.89378290154263202896
printf >&${COPROC[1]} 'pi*%s^2\n' $ray
read -u $COPROC answer
echo $answer
5541.76944093239527260816
As bc
is ready, running in background and I/O are ready too, there is no delay, nothing to load, open, close, before or after operation. Only the operation himself! This become a lot quicker than having to fork to bc
for each operation!
Border effect: While bc
stay running, they will hold all registers, so some variables or functions could be defined at initialisation step, as first write to ${COPROC[1]}
, just after starting the task (via coproc
).
Into a function newConnector
You may found my newConnector
function on GitHub.Com or on my own site (Note on GitHub: there are two files on my site. Function and demo are bundled into one uniq file which could be sourced for use or just run for demo.)
Sample:
source shell_connector.sh
tty
/dev/pts/20
ps --tty pts/20 fw
PID TTY STAT TIME COMMAND
29019 pts/20 Ss 0:00 bash
30745 pts/20 R+ 0:00 \_ ps --tty pts/20 fw
newConnector /usr/bin/bc "-l" '3*4' 12
ps --tty pts/20 fw
PID TTY STAT TIME COMMAND
29019 pts/20 Ss 0:00 bash
30944 pts/20 S 0:00 \_ /usr/bin/bc -l
30952 pts/20 R+ 0:00 \_ ps --tty pts/20 fw
declare -p PI
bash: declare: PI: not found
myBc '4*a(1)' PI
declare -p PI
declare -- PI="3.14159265358979323844"
The function myBc
lets you use the background task with simple syntax.
Then for date:
newConnector /bin/date '-f - +%s' @0 0
myDate '2000-01-01'
946681200
myDate "$(ps ho lstart 1)" boottime
myDate now now
read utm idl </proc/uptime
myBc "$now-$boottime" uptime
printf "%s\n" ${utm%%.*} $uptime
42134906
42134906
ps --tty pts/20 fw
PID TTY STAT TIME COMMAND
29019 pts/20 Ss 0:00 bash
30944 pts/20 S 0:00 \_ /usr/bin/bc -l
32615 pts/20 S 0:00 \_ /bin/date -f - +%s
3162 pts/20 R+ 0:00 \_ ps --tty pts/20 fw
From there, if you want to end one of background processes, you just have to close its fd:
eval "exec $DATEOUT>&-"
eval "exec $DATEIN>&-"
ps --tty pts/20 fw
PID TTY STAT TIME COMMAND
4936 pts/20 Ss 0:00 bash
5256 pts/20 S 0:00 \_ /usr/bin/bc -l
6358 pts/20 R+ 0:00 \_ ps --tty pts/20 fw
which is not needed, because all fd close when the main process finishes.
echo
the variable is a useless use ofecho
, and a useless use of variables. – tripleeevariable=$(command)
but I think"$string"
is a validcommand
"; stackoverflow.com/questions/37194795/… – tripleee