My title may not be clear enough, but please look carefully on the following description.Thanks in advance.
I have a RGB image and a binary mask image:
Mat img = imread("test.jpg")
Mat mask = Mat::zeros(img.rows, img.cols, CV_8U);
Give some ones to the mask, assume the number of ones is N. Now the nonzero coordinates are known, based on these coordinates, we can surely obtain the corresponding pixel RGB value of the origin image.I know this can be accomplished by the following code:
Mat colors = Mat::zeros(N, 3, CV_8U);
int counter = 0;
for (int i = 0; i < mask.rows; i++)
{
for (int j = 0; j < mask.cols; j++)
{
if (mask.at<uchar>(i, j) == 1)
{
colors.at<uchar>(counter, 0) = img.at<Vec3b>(i, j)[0];
colors.at<uchar>(counter, 1) = img.at<Vec3b>(i, j)[1];
colors.at<uchar>(counter, 2) = img.at<Vec3b>(i, j)[2];
counter++;
}
}
}
And the coords will be as follows: enter image description here
However, this two layer of for loop costs too much time. I was wondering if there is a faster method to obatin colors, hope you guys can understand what I was trying to convey.
PS:If I can use python, this can be done in only one sentence:
colors = img[mask == 1]
Mat
calledcoords
, when you're not storing coordinates in it, but rather pixel values from the input image? | Also, that Python code is incorrect, numpy arrays are not callable. Did you meanimg[mask==1]
? Furthermore, it doesn't produce a list of coordinates either. – Dan Mašek