Ok cool. I don't think there is a built-in option for griddata() that does what you want, so you will need to write it yourself.
This comes down to calculating the distances between N input data points and M interpolation points. This is simple enough to do but if you have a lot of points it can be slow at ~O(M*N). But here's an example that calculates the distances to allN data points, for each interpolation point. If the number of data points withing the radius is at least neighbors, it keeps the value. Otherwise is writes the value of NODATA.
neighbors is 4 because griddata() will use biilinear interpolation which needs points bounding the interpolants in each dimension (2*2 = 4).
#invec - input points Nx2 numpy array
#mvec - interpolation points Mx2 numpy array
#just some random points for example
N=100
invec = 10*np.random.random([N,2])
M=50
mvec = 10*np.random.random([M,2])
# --- here you would put your griddata() call, returning interpolated_values
interpolated_values = np.zeros(M)
NODATA=np.nan
radius = 5.0
neighbors = 4
for m in range(M):
data_in_radius = np.sqrt(np.sum( (invec - mvec[m])**2, axis=1)) <= radius
if np.sum(data_in_radius) < neighbors :
interpolated_values[m] = NODATA
Edit:
Ok re-read and noticed the input is really 2D. Example modified.
Just as an additional comment, this could be greatly accelerated if you first build a coarse mapping from each point mvec[m] to a subset of the relevant data points.
The costliest step in the loop would change from
np.sqrt(np.sum( (invec - mvec[m])**2, axis=1))
to something like
np.sqrt(np.sum( (invec[subset[m]] - mvec[m])**2, axis=1))
There are plenty of ways to do this, for example using a Quadtree, hashing function, or 2D index. But whether this gives performance advantage depends on the application, how your data is structured, etc.
nan? - Daniel F