I currently have a nested object interest_scores
in ES that looks like this:
[{
username: 'Somebody',
interest_scores: [
{ name: 'Running', score: 10 }
{ name: 'Food and drinks', score: 21 }
]
},
{
username: 'SomebodyElse',
interest_scores: [
{ name: 'Running', score: 7 }
{ name: 'Food and drinks', score: 29 }
]
}]
When I enter the search term Running I would like the user with the highest score
for Running to get returned first.
I know the way to do this is to use a Function Score Query but I am not sure how to use the matching search term in the function / script. What I think is that the query will return all documents that have the interest "Running" and then I could use something like interest_scores.{match}.score
to add to or multiply by the document score.
Any help with this would be greatly appreciated!
As requested, here is the mapping:
{
"influencers": {
"mappings": {
"influencer": {
"properties": {
"email": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"gender": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"geo": {
"type": "geo_point"
},
"hashtags": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"id": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"interest_scores": {
"type": "nested",
"properties": {
"name": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"score": {
"type": "long"
}
}
},
"interests": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"language": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"location": {
"properties": {
"city": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"country": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"country_code": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"lat": {
"type": "float"
},
"lng": {
"type": "float"
},
"state_code": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"subdivision": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
},
"network_data": {
"properties": {
"facebook": {
"properties": {
"url": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"username": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
},
"instagram": {
"properties": {
"bio": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"engagement": {
"type": "float"
},
"id": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"picture": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"reach": {
"type": "long"
},
"url": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"username": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
},
"pinterest": {
"properties": {
"url": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"username": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
},
"twitter": {
"properties": {
"bio": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"engagement": {
"type": "float"
},
"id": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"picture": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"reach": {
"type": "long"
},
"url": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"username": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
},
"youtube": {
"properties": {
"bio": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"engagement": {
"type": "float"
},
"id": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"picture": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"reach": {
"type": "long"
},
"url": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"username": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"videos": {
"type": "long"
},
"views": {
"type": "long"
},
"views_per_video": {
"type": "float"
}
}
}
}
},
"networks": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"picture": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"total_reach": {
"type": "long"
},
"username": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
}
}
}
}
I do not have a function score query yet, I am only testing in the Dev Tools of Kibana - I do have all of the other filters working correctly though. I am just looking to say "If the search term matches a interest_scores.name
then sort the hits by the interest_scores.score
of that interest_scores.name
Update
The following seems to be working when I test it in Kibana dev tools:
{
"query": {
"nested": {
"path": "interest_scores",
"score_mode": "sum",
"query": {
"function_score": {
"query": {
"match": { "interest_scores.name": "Running" }
},
"script_score": {
"script": "_score + doc['interest_scores.score'].value"
}
}
}
}
}
}
I have tested it with a few different search terms and it always returns the highest score first, but what is weird is that I get the same results when I remove the script_score
function. Can anyone tell me if this is a good solution, or why it works without the script_score
?