I have computed X_train, X_test, y_train, y_test
. But I can not compute y_train_true, y_train_prob, y_test_true, y_test_prob
.
How can I compute y_train_true, y_train_prob, y_test_true, y_test_prob
from the following code ?
X_train:
X_test:
y_train:
y_test:
N.B,
y_train_true: True binary labels of 0 or 1 in the training dataset
y_train_prob: Probability in range {0,1} predicted by the model for the training dataset
y_test_true: True binary labels of 0 or 1 in the testing dataset
y_test_prob: Probability in range {0,1} predicted by the model for the testing dataset
Code :
# Split test and train data
import numpy as np
from sklearn.model_selection import train_test_split
X = np.array(dataset.ix[:, 1:10])
y = np.array(dataset['benign_malignant'])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
#Define Classifier and ====
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 2)
# knn = KNeighborsClassifier(n_neighbors=11)
knn.fit(X_train, y_train)
# Predicting the Test set results
y_pred = knn.predict(X_train)