You can do this with a heterogeneous list, as follows.
Require Vector.
Require Import List.
Import ListNotations.
Inductive hlist {A : Type} (B : A -> Type) : list A -> Type :=
| hnil : hlist B []
| hcons : forall a l, B a -> hlist B l -> hlist B (a :: l).
Definition vector_of_vectors (T : Type) (l : list nat) : Type :=
hlist (Vector.t T) l.
Then if l
is your list of lengths, the type vector_of_vectors T l
with will the type you describe.
For example, we can construct an element of vector_of_vectors bool [2; 0; 1]
:
Section example.
Definition ls : list nat := [2; 0; 1].
Definition v : vector_of_vectors bool ls :=
hcons [false; true]
(hcons []
(hcons [true] hnil)).
End example.
This example uses some notations for vectors that you can set up like this:
Arguments hnil {_ _}.
Arguments hcons {_ _ _ _} _ _.
Arguments Vector.nil {_}.
Arguments Vector.cons {_} _ {_} _.
Delimit Scope vector with vector.
Bind Scope vector with Vector.t.
Notation "[ ]" := (@Vector.nil _) : vector.
Notation "a :: v" := (@Vector.cons _ a _ v) : vector.
Notation " [ x ] " := (Vector.cons x Vector.nil) : vector.
Notation " [ x ; y ; .. ; z ] " := (Vector.cons x (Vector.cons y .. (Vector.cons z Vector.nil) ..)) : vector.
Open Scope vector.