library(ggmosaic)
library(tidyverse)
Below is the sample code
happy2<-happy%>%
select(sex,marital,degree,health)%>%
group_by(sex,marital,degree,health)%>%
summarise(Count=n())
The following code splits the dataset into a nested list with tables of male and female (sex variable) for each category of the degree variable.
happy2 %>%
split(.$degree) %>%
lapply(function(x) split(x, x$sex))
This is where I'm now struggling. I would like to reshape, or using Tidyr, spread the "marital" variable, or perhaps this should be split again, so that each category of "marital" is a column header with each column containing the "health" variable and corresponding "Count". The redundant "sex" and "degree" columns can be dropped.
Since I'm working with a list, I've been attempting to use Tidyverse methods, for example, I've been trying to use purrr to drop variables:
happy2%>%map(~select(.x,-sex)
I'm thinking that I can also spread using purrr, but I'm having trouble making this work.
To help illustrate what I'm looking for, I attached a pic of the possible structure. I didn't include all categories and the counts are not correct since I'm only showing the structure. I suppose the "marital" category could also be a third split variable as well if that's easier? So what I'm hoping for is male and female tables for each category of degree, with marital by health and showing the corresponding count.
Help would be appreciated...