Most of the answers I have read till now say to use the Hough circle method to detect the iris region, but it doesn't really work on all images.
So my approach is pretty simple, which involves following steps
- Detect face from the image
- Find eye region from the face
- Get the RGB values just below the pupil region(thereby getting the iris region RGB values)
- And pass the obtained RGB values to find_color function
NOTE: Pass High-resolution image as the input for better results. If you pass low-resolution images such as 480x620, 320x240, you might end up getting poor results.
Below is the code for the same
import cv2
import imutils
from imutils import face_utils
import dlib
import numpy as np
import webcolors
flag=0
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
img= cv2.imread('blue2.jpg')
img_rgb= cv2.cvtColor(img,cv2.COLOR_BGR2RGB) #convert to RGB
#cap = cv2.VideoCapture(0) #turns on the webcam
(left_Start, left_End) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
#points for left eye and right eye
(right_Start, right_End) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
def find_color(requested_colour): #finds the color name from RGB values
min_colours = {}
for name, key in webcolors.CSS3_HEX_TO_NAMES.items():
r_c, g_c, b_c = webcolors.hex_to_rgb(name)
rd = (r_c - requested_colour[0]) ** 2
gd = (g_c - requested_colour[1]) ** 2
bd = (b_c - requested_colour[2]) ** 2
min_colours[(rd + gd + bd)] = key
closest_name = min_colours[min(min_colours.keys())]
return closest_name
#ret, frame=cap.read()
#frame = cv2.flip(frame, 1)
#cv2.imshow(winname='face',mat=frame)
gray = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2GRAY)
# detect dlib face rectangles in the grayscale frame
dlib_faces = detector(gray, 0)
for face in dlib_faces:
eyes = [] # store 2 eyes
# convert dlib rect to a bounding box
(x,y,w,h) = face_utils.rect_to_bb(face)
cv2.rectangle(img_rgb,(x,y),(x+w,y+h),(255,0,0),1) #draws blue box over face
shape = predictor(gray, face)
shape = face_utils.shape_to_np(shape)
leftEye = shape[left_Start:left_End]
# indexes for left eye key points
rightEye = shape[right_Start:right_End]
eyes.append(leftEye) # wrap in a list
eyes.append(rightEye)
for index, eye in enumerate(eyes):
flag+=1
left_side_eye = eye[0] # left edge of eye
right_side_eye = eye[3] # right edge of eye
top_side_eye = eye[1] # top side of eye
bottom_side_eye = eye[4] # bottom side of eye
# calculate height and width of dlib eye keypoints
eye_width = right_side_eye[0] - left_side_eye[0]
eye_height = bottom_side_eye[1] - top_side_eye[1]
# create bounding box with buffer around keypoints
eye_x1 = int(left_side_eye[0] - 0 * eye_width)
eye_x2 = int(right_side_eye[0] + 0 * eye_width)
eye_y1 = int(top_side_eye[1] - 1 * eye_height)
eye_y2 = int(bottom_side_eye[1] + 0.75 * eye_height)
# draw bounding box around eye roi
#cv2.rectangle(img_rgb,(eye_x1, eye_y1), (eye_x2, eye_y2),(0,255,0),2)
roi_eye = img_rgb[eye_y1:eye_y2 ,eye_x1:eye_x2] # desired EYE Region(RGB)
if flag==1:
break
x=roi_eye.shape
row=x[0]
col=x[1]
# this is the main part,
# where you pick RGB values from the area just below pupil
array1=roi_eye[row//2:(row//2)+1,int((col//3)+3):int((col//3))+6]
array1=array1[0][2]
array1=tuple(array1) #store it in tuple and pass this tuple to "find_color" Funtion
print(find_color(array1))
cv2.imshow("frame",roi_eye)
cv2.waitKey(0)
cv2.destroyAllWindows()
Below are some examples.
Now this is the output of our code when the above image is given as the input: lightsteelblue
The output of our code when the above image is given as the input: saddlebrown
The output of our code when the above image is given as the input: sienna(shade of brown)
The output of our code when the above image is given as the input: darkgrey
So, you can see how close the results are to the actual eye color. This works pretty well with high-resolution images as I already mentioned.
PS: Correct me if am wrong, open to suggestions.