I have an svmlight-formatted file with values of the form:
92.91 18256731:1 71729421:1 72329637:1 83328561:1 118265976:1 134892759:1 198163358:1 352348616:1 526943048:1
5.30 102156934:1 134892759:1 198163358:1 254112843:1 262373758:1 512748316:1 526943048:1
22.00 32172600:1 72329637:1 118265976:1 134892759:1 198163358:1 411824213:1 443226486:1 445371412:1 526943048:1
I am trying to import this in h2o using h2o.import_file(fname.svmlight)
Does h2o support high dimensional sparse binary features?
Do I need to convert the hashed values in some indexes for this to work?
"fname.svmlight"
. – Vivek Kumar