I apologize for the extremely long explanation but I'm stuck for a month now and I really can't figure out how to solve this. I have to derive, as a project, a compiler with antlr4 for a regex grammar that generate a program (JAVA) able to distinguish words belonging to the language generated by a regex used as input for antlr4 compiler. The grammar that we have to use is this one:
RE ::= union | simpleRE
union ::= simpleRE + RE
simpleRE ::= concatenation | basicRE
concatenation ::= basicRE simpleRE
basicRE ::= group | any | char
group ::= (RE) | (RE)∗ | (RE)+
any ::= ?
char ::= a | b | c | ··· | z | A | B | C | ··· | Z | 0 | 1 | 2 | ··· | 9 | . | − | _
and from that, I gave this grammar to antrl4
Regexp.g4
grammar Regxp;
start_rule
: re # start
;
re
: union
| simpleRE
;
union
: simpleRE '+' re # unionOfREs
;
simpleRE
: concatenation
| basicRE
;
concatenation
: basicRE simpleRE #concatOfREs
;
basicRE
: group
| any
| cHAR
;
group
: LPAREN re RPAREN '*' # star
| LPAREN re RPAREN '+' # plus
| LPAREN re RPAREN # singleWithParenthesis
;
any
: '?'
;
cHAR
: CHAR #singleChar
;
WS : [ \t\r\n]+ -> skip ;
LPAREN : '(' ;
RPAREN : ')' ;
CHAR : LETTER | DIGIT | DOT | D | UNDERSCORE
;
/* tokens */
fragment LETTER: [a-zA-Z]
;
fragment DIGIT: [0-9]
;
fragment DOT: '.'
;
fragment D: '-'
;
fragment UNDERSCORE: '_'
;
Then i generated the java files from antlr4 with visitors. As far as i understood the logic of the project, when the visitor is traversing the parse tree, it has to generate lines of code to fill the transition table of the NFA derived as applying the Thompson rules on the input regexp. Then these lines of code are to be saved as a .java text file, and compiled to a program that takes in input a string (word) and tells if the word belongs or not to the language generated by the regex. The result should be like this:
RE word Result
a+b a OK
b OK
ac KO
a∗b aab OK
b OK
aaaab OK
abb KO
So I'm asking, how can I represent the transition table in a way such that it can be filled during the visit of the parse tree and then exported in order to be used by a simple java program implementing the acceptance algorithm for an NFA? (i'm considering this pseudo-code):
S = ε−closure(s0);
c = nextChar();
while (c ≠ eof) do
S = ε−closure(move(S,c));
c = nextChar();
end while
if (S ∩ F ≠ ∅) then return “yes”;
else return “no”;
end if
As of now I managed to make that, when the visitor is for example in the unionOfREs rule, it will do something like this:
MyVisitor.java
private List<String> generatedCode = new ArrayList<String>();
/* ... */
@Override
public String visitUnionOfREs(RegxpParser.UnionOfREsContext ctx) {
System.out.println("unionOfRExps");
String char1 = visit(ctx.simpleRE());
String char2 = visit(ctx.re());
generatedCode.add("tTable.addUnion("+char1+","+char2+");");
//then this line of code will populate the transition table
return char1+"+"+char2;
}
/* ... */
The addUnion it's inside a java file that will contains all the methods to fill the transition table. I wrote code for the union, but i dont' like it because it's like to write the transition table of the NFA, as you would write it on a paper: example. I got this when I noticed that by building the table iteratively, you can define 2 "pointers" on the table, currentBeginning and currentEnd, that tell you where to expand again the character written on the table, with the next rule that the visitor will find on the parse tree. Because this character can be another production or just a single character. On the link it is represented the written-on-paper example that convinced me to use this approach.
TransitionTable.java
/* ... */
public void addUnion(String char1, String char2) {
if (transitionTable.isEmpty()) {
List<List<Integer>> lc1 = Arrays.asList(Arrays.asList(null)
,Arrays.asList(currentBeginning+3)
,Arrays.asList(null)
,Arrays.asList(null)
,Arrays.asList(null)
,Arrays.asList(null));
List<List<Integer>> lc2 = Arrays.asList(Arrays.asList(null)
,Arrays.asList(null)
,Arrays.asList(currentBeginning+4)
,Arrays.asList(null)
,Arrays.asList(null)
,Arrays.asList(null));
List<List<Integer>> le = Arrays.asList(Arrays.asList(currentBeginning+1,currentBeginning+2)
,Arrays.asList(null)
,Arrays.asList(null)
,Arrays.asList(currentBeginning+5)
,Arrays.asList(currentBeginning+5)
,Arrays.asList(null));
transitionTable.put(char1, lc1);
transitionTable.put(char2, lc2);
transitionTable.put("epsilon", le);
//currentBeginning += 2;
//currentEnd = transitionTable.get(char2).get(currentBeginning).get(0);
currentEnd = transitionTable.get("epsilon").size()-1;//il 5
} else { //not the first time it encounters this rule, beginning and end changed
//needs to add 2 less states
}
}
/* ... */
At the moment I'm representing the transition table as HashMap<String, List<List<Integer>>>
strings are for chars on the edges of the NFA and List<List<Integer>>
because by being non deterministic, it needs to represent more transitions from a single state.
But going this way, for a parse tree like this i will obtain this line of code for the union : "tTable.addUnion("tTable.addConcat(a,b)","+char2+");"
And i'm blocked here, i don't know how to solve this and i really can't think a different way to represent the transition table or to fill it while visiting the parse tree.
Thank You.