I think the following partially does what you want (I will add the caveat that I have no experience of using Coq):
infixl 4 &
(&) : Bool -> Bool -> Bool
(&) True True = True
(&) _ _ = False
elim_and : x & y = True -> (x = True, y = True)
elim_and {x = False} {y = False} x_and_y_is_true = (x_and_y_is_true, x_and_y_is_true)
elim_and {x = False} {y = True} x_and_y_is_true = (x_and_y_is_true, Refl)
elim_and {x = True} {y = False} x_and_y_is_true = (Refl, x_and_y_is_true)
elim_and {x = True} {y = True} x_and_y_is_true = (Refl, Refl)
is_sorted : {a: Type} -> (ltRel: a -> a -> Bool) -> List a -> Bool
is_sorted ltRel [] = True
is_sorted ltRel (x :: []) = True
is_sorted ltRel (x :: y :: xs) = (ltRel x y) & (is_sorted ltRel (y :: xs))
is_sorted_true_elim : {x : a} -> is_sorted ltRel (x :: y :: xs) = True -> (ltRel x y = True,
is_sorted ltRel (y :: xs) = True)
is_sorted_true_elim {x} {y} {xs} {ltRel} is_sorted_x_y_xs = elim_and is_sorted_x_y_xs
The important detail is that if your function definition is a simple set of equations, then the unification will somewhat magically substitute one side of the equation for the other when required. (I used a less efficient non-shortcircuited version of the logical "and" operator, because the standard "&&" or "if/then/else" operators introduce complications of laziness.)
Ideally there should be some straightforward way to unfold definitions that include 'with'-based pattern matching, but I don't know how to make that work, eg:
is_sorted : {a: Type} -> (ltRel: a -> a -> Bool) -> List a -> Bool
is_sorted ltRel [] = True
is_sorted ltRel (x :: []) = True
is_sorted ltRel (x :: y :: xs) with (ltRel x y)
| True = is_sorted ltRel (y :: xs)
| False = False
is_sorted_true_elim : {x : a} -> is_sorted ltRel (x :: y :: xs) = True -> (ltRel x y = True,
is_sorted ltRel (y :: xs) = True)
is_sorted_true_elim {x} {y} {xs} {ltRel} is_sorted_x_y_xs with (ltRel x y) proof x_lt_y_value
| True = ?hole
| False = ?hole2