Another description of the problem: Compute a matrix which satisfies certain constraints
Given a function whose only argument is a 4x4 matrix (int[4][4] matrix
), determine the maximal possible output (return value) of that function.
The 4x4 matrix must satisfy the following constraints:
- All entries are integers between -10 and 10 (inclusively).
- It must be symmetrix, entry(x,y) = entry(y,x).
- Diagonal entries must be positive, entry(x,x) > 0.
- The sum of all 16 entries must be 0.
The function must only sum up values of the matrix, nothing fancy.
My question:
Given such a function which sums up certain values of a matrix (matrix satisfies above constraints), how do I find the maximal possible output/return value of that function?
For example:
/* The function sums up certain values of the matrix,
a value can be summed up multiple or 0 times. */
// for this example I arbitrarily chose values at (0,0), (1,2), (0,3), (1,1).
int exampleFunction(int[][] matrix) {
int a = matrix[0][0];
int b = matrix[1][2];
int c = matrix[0][3];
int d = matrix[1][1];
return a+b+c+d;
}
/* The result (max output of the above function) is 40,
it can be achieved by the following matrix: */
0. 1. 2. 3.
0. 10 -10 -10 10
1. -10 10 10 -10
2. -10 10 1 -1
3. 10 -10 -1 1
// Another example:
// for this example I arbitrarily chose values at (0,3), (0,1), (0,1), (0,4), ...
int exampleFunction2(int[][] matrix) {
int a = matrix[0][3] + matrix[0][1] + matrix[0][1];
int b = matrix[0][3] + matrix[0][3] + matrix[0][2];
int c = matrix[1][2] + matrix[2][1] + matrix[3][1];
int d = matrix[1][3] + matrix[2][3] + matrix[3][2];
return a+b+c+d;
}
/* The result (max output of the above function) is -4, it can be achieved by
the following matrix: */
0. 1. 2. 3.
0. 1 10 10 -10
1. 10 1 -1 -10
2. 10 -1 1 -1
3. -10 -10 -1 1
I don't know where to start. Currently I'm trying to estimate the number of 4x4 matrices which satisfy the constraints, if the number is small enough the problem could be solved by brute force.
Is there a more general approach? Can the solution to this problem be generalized such that it can be easily adapted to arbitrary functions on the given matrix and arbitrary constraints for the matrix?