I'm curious if there is a good way to share weights across different RNN cells while still feeding each cell different inputs.
The graph that I am trying to build is like this:
where there are three LSTM Cells in orange which operate in parallel and between which I would like to share the weights.
I've managed to implement something similar to what I want using a placeholder (see below for code). However, using a placeholder breaks the gradient calculations of the optimizer and doesn't train anything past the point where I use the placeholder. Is it possible to do this a better way in Tensorflow?
I'm using Tensorflow 1.2 and python 3.5 in an Anaconda environment on Windows 7.
Code:
def ann_model(cls,data, act=tf.nn.relu):
with tf.name_scope('ANN'):
with tf.name_scope('ann_weights'):
ann_weights = tf.Variable(tf.random_normal([1,
cls.n_ann_nodes]))
with tf.name_scope('ann_bias'):
ann_biases = tf.Variable(tf.random_normal([1]))
out = act(tf.matmul(data,ann_weights) + ann_biases)
return out
def rnn_lower_model(cls,data):
with tf.name_scope('RNN_Model'):
data_tens = tf.split(data, cls.sequence_length,1)
for i in range(len(data_tens)):
data_tens[i] = tf.reshape(data_tens[i],[cls.batch_size,
cls.n_rnn_inputs])
rnn_cell = tf.nn.rnn_cell.BasicLSTMCell(cls.n_rnn_nodes_lower)
outputs, states = tf.contrib.rnn.static_rnn(rnn_cell,
data_tens,
dtype=tf.float32)
with tf.name_scope('RNN_out_weights'):
out_weights = tf.Variable(
tf.random_normal([cls.n_rnn_nodes_lower,1]))
with tf.name_scope('RNN_out_biases'):
out_biases = tf.Variable(tf.random_normal([1]))
#Encode the output of the RNN into one estimate per entry in
#the input sequence
predict_list = []
for i in range(cls.sequence_length):
predict_list.append(tf.matmul(outputs[i],
out_weights)
+ out_biases)
return predict_list
def create_graph(cls,sess):
#Initializes the graph
with tf.name_scope('input'):
cls.x = tf.placeholder('float',[cls.batch_size,
cls.sequence_length,
cls.n_inputs])
with tf.name_scope('labels'):
cls.y = tf.placeholder('float',[cls.batch_size,1])
with tf.name_scope('community_id'):
cls.c = tf.placeholder('float',[cls.batch_size,1])
#Define Placeholder to provide variable input into the
#RNNs with shared weights
cls.input_place = tf.placeholder('float',[cls.batch_size,
cls.sequence_length,
cls.n_rnn_inputs])
#global step used in optimizer
global_step = tf.Variable(0,trainable = False)
#Create ANN
ann_output = cls.ann_model(cls.c)
#Combine output of ANN with other input data x
ann_out_seq = tf.reshape(tf.concat([ann_output for _ in
range(cls.sequence_length)],1),
[cls.batch_size,
cls.sequence_length,
cls.n_ann_nodes])
cls.rnn_input = tf.concat([ann_out_seq,cls.x],2)
#Create 'unrolled' RNN by creating sequence_length many RNN Cells that
#share the same weights.
with tf.variable_scope('Lower_RNNs'):
#Create RNNs
daily_prediction, daily_prediction1 =[cls.rnn_lower_model(cls.input_place)]*2
When training mini-batches are calculated in two steps:
RNNinput = sess.run(cls.rnn_input,feed_dict = {
cls.x:batch_x,
cls.y:batch_y,
cls.c:batch_c})
_ = sess.run(cls.optimizer, feed_dict={cls.input_place:RNNinput,
cls.y:batch_y,
cls.x:batch_x,
cls.c:batch_c})
Thanks for your help. Any ideas would be appreciated.
[cls.rnn_lower_model(cls.input_place)]*2
. If input_place was simply a node in the graph, I could not vary the inputs for different instances of the same shared cell. – AlexR