I want to fit a lognormal distribution in Python. My question is why should I use scipy.lognormal.fit instead of just doing the following:
from numpy import log
mu = log(data).mean()
sigma = log(data).std()
which gives the MLE of mu and sigma so that the distribution is lognormal(mu, sigma**2)?
Also, once I get mu and sigma how can I get a scipy object of the distribution lognormal(mu, sigma**2)? The arguments passed to scipy.stats.lognorm are not clear to me.
Thanks
