I have a simple cost function, which I want to optimize using scipy.optimize.minimize function.
opt_solution = scipy.optimize.minimize(costFunction, theta, args = (training_data,), method = 'L-BFGS-B', jac = True, options = {'maxiter': 100)
where costFunction
is the function to be optimized, theta
are the parameters to be optimized. Inside costFunction
, I printed the value of cost function. But the parameter maxiter
seems to have no effect whether I increase value from 10 to 100000. The time it is taking is same. Also, I was expecting the printed value of cost function should be equal to the values of maxiter
. So I am feeling maxiter
has no effect. What might be the problem ?
Cost function is
def costFunction(self, theta, input):
""" Extract weights and biases from 'theta' input """
W1 = theta[self.limit0 : self.limit1].reshape(self.hidden_size, self.visible_size)
W2 = theta[self.limit1 : self.limit2].reshape(self.visible_size, self.hidden_size)
b1 = theta[self.limit2 : self.limit3].reshape(self.hidden_size, 1)
b2 = theta[self.limit3 : self.limit4].reshape(self.visible_size, 1)
""" Compute output layers by performing a feedforward pass
Computation is done for all the training inputs simultaneously """
hidden_layer = self.sigmoid(numpy.dot(W1, input) + b1)
output_layer = self.sigmoid(numpy.dot(W2, hidden_layer) + b2)
""" Compute intermediate difference values using Backpropagation algorithm """
diff = output_layer - input
sum_of_squares_error = 0.5 * numpy.sum(numpy.multiply(diff, diff)) / input.shape[1]
weight_decay = 0.5 * self.lamda * (numpy.sum(numpy.multiply(W1, W1)) + numpy.sum(numpy.multiply(W2, W2)))
cost = sum_of_squares_error + weight_decay
""" Compute the gradient values by averaging partial derivatives
Partial derivatives are averaged over all training examples """
W1_grad = numpy.dot(del_hid, numpy.transpose(input))
W2_grad = numpy.dot(del_out, numpy.transpose(hidden_layer))
b1_grad = numpy.sum(del_hid, axis = 1)
b2_grad = numpy.sum(del_out, axis = 1)
W1_grad = W1_grad / input.shape[1] + self.lamda * W1
W2_grad = W2_grad / input.shape[1] + self.lamda * W2
b1_grad = b1_grad / input.shape[1]
b2_grad = b2_grad / input.shape[1]
""" Transform numpy matrices into arrays """
W1_grad = numpy.array(W1_grad)
W2_grad = numpy.array(W2_grad)
b1_grad = numpy.array(b1_grad)
b2_grad = numpy.array(b2_grad)
""" Unroll the gradient values and return as 'theta' gradient """
theta_grad = numpy.concatenate((W1_grad.flatten(), W2_grad.flatten(),
b1_grad.flatten(), b2_grad.flatten()))
# Update counter value
self.counter += 1
print "Index ", self.counter, "cost ", cost
return [cost, theta_grad]
(x-x')^2
. – Shyamkkhadka