The common interview problem of determining the missing value in a range from 1 to N has been done a thousand times over. Variations include 2 missing values up to K missing values.
Example problem: Range [1,10] (1 2 4 5 7 8 9 10) = {3,6}
Here is an example of the various solutions:
Easy interview question got harder: given numbers 1..100, find the missing number(s)
My question is that seeing as the simple case of one missing value is of O(n) complexity and that the complexity of the larger cases converge at roughly something larger than O(nlogn):
Couldn't it just be easier to answer the question by saying sort (mergesort) the range and iterate over it observing the missing elements?
This solution should take no more than O(nlogn) and is capable of solving the problem for ranges other than 1-to-N such as 10-to-1000 or -100 to +100 etc...
Is there any reason to believe that the given solutions in the above SO link will be better than the sorting based solution for larger number of missing values?
Note: It seems a lot of the common solutions to this problem, assume an only number theoretic approach. If one is being asked such a question in an S/E interview wouldn't it be prudent to use a more computer science/algorithmic approach, assuming the approach is on par with the number theoretic solution's complexity...
More related links:
n
items in memory, but they are shown to you one at a time. You only havek^O(1)
memory to play with. In this case the sum-of-powers technique makes sense. You can also improve the "time used per number shown", by hashing as in stackoverflow.com/a/36851791/205521 – Thomas AhleO(k)
space complexity, but heap sort can manage the problem inO(1)
space. – Elliott