To calculate the proportion estimated by the random effects models (with 95% confidence intervals), the m5$TE.random
, m5$lower.random
and m5$upper.random
values need to be backtransformed according to the sm
option specified in metaprop
.
Let consider a first case where the logit transformation was chosen to calculate an overall proportion:
library(meta)
m1 <- metaprop(4:1, c(10, 20, 30, 40), sm="PLOGIT")
summary(m1)
################
Number of studies combined: k = 4
proportion 95%-CI z p-value
Fixed effect model 0.1439 [0.0769; 0.2533] -- --
Random effects model 0.1214 [0.0373; 0.3306] -- --
Quantifying heterogeneity:
tau^2 = 1.1288; H = 1.77 [1.04; 3.01]; I^2 = 68.0% [7.1%; 89.0%]
Test of heterogeneity:
Q d.f. p-value
9.38 3 0.0247
Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Logit transformation
- Clopper-Pearson confidence interval for individual studies
(random.est1 <- c(m1$TE.random,m1$lower.random,m1$upper.random))
meta:::backtransf(random.est1, sm="PLOGIT")
meta:::logit2p(random.est1)
################
We extract from m1
the trasformed values of the random effect model:
(random.est1 <- c(m1$TE.random,m1$lower.random,m1$upper.random))
###############
[1] -1.9788316 -3.2521123 -0.7055509
and then we backtransform using the meta:::backtransf
function of meta
meta:::backtransf(random.est1, sm="PLOGIT")
#######
[1] 0.12144344 0.03725106 0.33058266
or directly the logit backtransformation logit2p
:
meta:::logit2p(random.est1)
#######
[1] 0.12144344 0.03725106 0.33058266
which is equivalent to:
plogis(random.est1)
#######
[1] 0.12144344 0.03725106 0.33058266
Now we consider a second example using the Freeman-Tukey Double arcsine transformation:
m2 <- metaprop(4:1, c(10, 20, 30, 40), sm="PFT")
summary(m2)
###################
Number of studies combined: k = 4
proportion 95%-CI z p-value
Fixed effect model 0.0775 [0.0272; 0.1449] -- --
Random effects model 0.1093 [0.0138; 0.2589] -- --
Quantifying heterogeneity:
tau^2 = 0.0229; H = 1.78 [1.05; 3.04]; I^2 = 68.6% [9.1%; 89.2%]
Test of heterogeneity:
Q d.f. p-value
9.56 3 0.0227
Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Freeman-Tukey double arcsine transformation
- Clopper-Pearson confidence interval for individual studies
###################
Using the backtrasformation we get
random.est2 <- c(m2$TE.random,m2$lower.random,m2$upper.random)
unlist(lapply(random.est2, meta:::backtransf, sm="PFT", n=1/mean(1/m2$n)))
########
[1] 0.10932841 0.01376599 0.25889792
unlist(lapply(random.est2, meta:::asin2p, n=1/mean(1/m2$n)))
##########
[1] 0.10932841 0.01376599 0.25889792