That is not possible in Keras. Keras will, by default, shuffle your training data and then train on it in a mini-batch fashion. However, there are still ways to re-balance your dataset.
The imbalanced training data problem that you are facing is pretty common. You have many options available to you; I list a few below:
- You can adjust the relative weights of your classes using
class_weight
keyword of the model.fit()
function.
- You can "up-sample" your "apples" class or "down-sample" your "non-apples" class to have equal numbers of both classes during training.
- You can generate synthetic images of your "apples" class to augment your data set. To this end, the ImageDataGenerator class in Keras can be particularly useful. This Keras tutorial is a good introduction to its usage.
In my experience, I've found #2 and #3 to be most useful. #1 is limited by the fact that the convergence of stochastic gradient descent suffers when using class weights differing by a couple orders of magnitude and smaller batch sizes.
Jason Brownlee has put together a list of tactics for dealing with imbalanced classes that might also be useful to you.