I use the following code to tune parameters for my Xgboost implementation adapted from here:
searchGridSubCol <- expand.grid(subsample = c(0.5, 0.75, 1),
colsample_bytree = c(0.6, 0.8, 1))
ntrees <- 100
#Build a xgb.DMatrix object
#DMMatrixTrain <- xgb.DMatrix(data = yourMatrix, label = yourTarget)
rmseErrorsHyperparameters <- apply(searchGridSubCol, 1, function(parameterList){
#Extract Parameters to test
currentSubsampleRate <- parameterList[["subsample"]]
currentColsampleRate <- parameterList[["colsample_bytree"]]
xgboostModelCV <- xgb.cv(data = as.matrix(train), nrounds = ntrees, nfold = 5, showsd = TRUE, label = traintarget,
metrics = "rmse", verbose = TRUE, "eval_metric" = "rmse",
"objective" = "reg:linear", "max.depth" = 15, "eta" = 2/ntrees,
"subsample" = currentSubsampleRate, "colsample_bytree" = currentColsampleRate)
xvalidationScores <- as.data.frame(xgboostModelCV)
#Save rmse of the last iteration
rmse <- tail(xvalidationScores$test.rmse.mean, 1)
return(c(rmse, currentSubsampleRate, currentColsampleRate))
})
However I recieve the following error when storing the XGBoostModelCV:
Error in as.data.frame.default(xgboostModelCV) :
cannot coerce class ""xgb.cv.synchronous"" to a data.frame
Can someone explain to me what is causing this error and how may I fix it?
xgb.cv.synchronous
so it most likely isn't a dataframe, suggestprint(xgboostModelCV, verbose=TRUE)
and look for the structure that may interest. There should be something likexgboostModelCV$evaluation_log
orxgboostModelCV$best_iteration
– Andrew Lavers