This does not seem to be a data issue.
I'm doing computer exercises in R from Wooldridge (2012) Introductory Econometrics. Specifically Chapter 14 CE.1 (data is the rental file at: https://www.cengage.com/cgi-wadsworth/course_products_wp.pl?fid=M20b&product_isbn_issn=9781111531041)
I computed the model in differences (in Python)
model_diff = smf.ols(formula='diff_lrent ~ diff_lpop + diff_lavginc + diff_pctstu', data=rental).fit()
OLS Regression Results
==============================================================================
Dep. Variable: diff_lrent R-squared: 0.322
Model: OLS Adj. R-squared: 0.288
Method: Least Squares F-statistic: 9.510
Date: Sun, 05 Nov 2017 Prob (F-statistic): 3.14e-05
Time: 00:46:55 Log-Likelihood: 65.272
No. Observations: 64 AIC: -122.5
Df Residuals: 60 BIC: -113.9
Df Model: 3
Covariance Type: nonrobust
================================================================================
coef std err t P>|t| [0.025 0.975]
--------------------------------------------------------------------------------
Intercept 0.3855 0.037 10.469 0.000 0.312 0.459
diff_lpop 0.0722 0.088 0.818 0.417 -0.104 0.249
diff_lavginc 0.3100 0.066 4.663 0.000 0.177 0.443
diff_pctstu 0.0112 0.004 2.711 0.009 0.003 0.019
==============================================================================
Omnibus: 2.653 Durbin-Watson: 1.655
Prob(Omnibus): 0.265 Jarque-Bera (JB): 2.335
Skew: 0.467 Prob(JB): 0.311
Kurtosis: 2.934 Cond. No. 23.0
==============================================================================
Now, the PLM package in R gives the same results for the first-difference models:
library(plm) modelfd <- plm(lrent~lpop + lavginc + pctstu,
data=data,model = "fd")
No problem so far. However, the fixed effect reports different estimates.
modelfx <- plm(lrent~lpop + lavginc + pctstu, data=data, model =
"within", effect="time") summary(modelfx)
The FE results should not be any different. In fact, the Computer Exercise question is:
(iv) Estimate the model by fixed effects to verify that you get identical estimates and standard errors to those in part (iii).
My best guest is that I am miss understanding something on the R package.
lm
command specify the formula as you have, but add a-1
to the end. As pointed out above, this will remove the intercept, which plm won't add automatically. The second point: rather thanfactor
, have you triedas.factor
? – Moritz Schwarz