I decided to create a code that would use KNN algorithm in dbscan to predict cluster labeling using gower distance matrix. The code is not very pretty and definitely not programmaticaly efficient but it works. Happy for any suggestions that would improve it.
The pseydocode is:
1) calculate new gower distance matrix for all data, including test and train
2) use the above distance matrix in kNN function (dbscan package) to determine the k nearest neighbours to each test data point.
3) determine the cluster labels for all those nearest points for each test point. Some of them will have no cluster labeling because they are test points themselves
4) create a count matrix to count the frequency of clusters for the k nearest points for each test point
5) use very simple likelihood calculation to choose the cluster for the test point based on its neighbours clusters (the maximum frequency). this part also considers the neighbouring test points. That is, the cluster for the test point is chosen only when the maximum frequency is largest when you add the number of neighbouring test points to the other clusters. Otherwise, it doesn't decide the cluster for that test point and waits for the next iteration when hopefully more of its neighboring test points have had their cluster label decided based on their neighbours.
6) repeat above (steps 2-5) until you've decided all clusters
** Note: this algorithm doesn't converge all the time. (once you do the math, it's obvious why that is) so, in the code i break out of the algorithm when the number of unclustered test points doesn't change after a while. then i repeat 2-6 again with new knn (change the number of nearest neighbours and then run the code again). This will ensure more points are involved in deciding in th enext round. I've tried both larger and smaller knn's and both work. Would be good to know which one is better. I haven't had to run the code more than twice so far to decide the clusters for the test data point.
Here is the code:
#calculate gower distance for all data (test + train)
gowerdist_test <- daisy(all_data[rangeofdataforgowerdist],
metric = "gower",
stand = FALSE,
type = list(asymm = listofasymmvars),
weights = Weights)
summary(gowerdist_test)
Then use the code below to label clusters for test data.
#library(dbscan)
# find the k nearest neibours for each point and order them with distance
iteration_MAX <- 50
iteration_current <- 0
maxUnclusterRepeatNum <- 10
repeatedUnclustNum <- 0
unclusteredNum <- sum(is.na(all_data$Cluster))
previousUnclustereNum <- sum(is.na(all_data$Cluster))
nn_k = 30 #number of neighbourhoods
while (anyNA(all_data$Cluster) & iteration_current < iteration_MAX)
{
if (repeatedUnclustNum >= maxUnclusterRepeatNum) {
print(paste("Max number of repetition (", maxUnclusterRepeatNum ,") for same unclustered data has reached. Clustering terminated unsuccessfully."))
invisible(gc())
break;
}
nn_test <- kNN(gowerdist_test, k = nn_k, sort = TRUE)
# for the TEST points in all data, find the closets TRAIN points and decide statistically which cluster they could belong to, based on the clusters of the nearest TRAIN points
test_matrix <- nn_test$id[1: nrow(analdata_test),] #create matrix of test data knn id's
numClusts <- nlevels(as.factor(sb_train$cluster))
NameClusts <- as.character(levels(as.factor(sb_train$cluster)))
count_clusters <- matrix(0, nrow = nrow(analdata_test), ncol = numClusts + 1) #create a count matrix that would count number of clusters + NA
colnames(count_clusters) <- c("NA", NameClusts) #name each column of the count matrix to cluster numbers
# get the cluster number of each k nearest neibhour of each test point
for (i in 1:nrow(analdata_test))
for (j in 1:nn_k)
{
test_matrix[i,j] <- all_data[nn_test$id[i,j], "Cluster"]
}
# populate the count matrix for the total clusters of the neighbours for each test point
for (i in 1:nrow(analdata_test))
for (j in 1:nn_k)
{
if (!is.na(test_matrix[i,j]))
count_clusters[i, c(as.character(test_matrix[i,j]))] <- count_clusters[i, c(as.character(test_matrix[i,j]))] + 1
else
count_clusters[i, c("NA")] <- count_clusters[i, c("NA")] + 1
}
# add NA's (TEST points) to the other clusters for comparison
count_clusters_withNA <- count_clusters
for (i in 2:ncol(count_clusters))
{
count_clusters_withNA[,i] <- t(rowSums(count_clusters[,c(1,i)]))
}
# This block of code decides the maximum count of cluster for each row considering the number other test points (NA clusters) in the neighbourhood
max_col_countclusters <- apply(count_clusters,1,which.max) #get the column that corresponds to the maximum value of each row
for (i in 1:length(max_col_countclusters)) #insert the maximum value of each row in its associated column in count_clusters_withNA
count_clusters_withNA[i, max_col_countclusters[i]] <- count_clusters[i, max_col_countclusters[i]]
max_col_countclusters_withNA <- apply(count_clusters_withNA,1,which.max) #get the column that corresponds to the maximum value of each row with NA added
compareCountClust <- max_col_countclusters_withNA == max_col_countclusters #compare the two count matrices
all_data$Cluster[1:nrow(analdata_test)] <- ifelse(compareCountClust, NameClusts[max_col_countclusters - 1], all_data$Cluster) #you subtract one because of additional NA column
iteration_current <- iteration_current + 1
unclusteredNum <- sum(is.na(all_data$Cluster))
if (previousUnclustereNum == unclusteredNum)
repeatedUnclustNum <- repeatedUnclustNum + 1
else {
repeatedUnclustNum <- 0
previousUnclustereNum <- unclusteredNum
}
print(paste("Iteration: ", iteration_current, " - Number of remaining unclustered:", sum(is.na(all_data$Cluster))))
if (unclusteredNum == 0)
print("Cluster labeling successfully Completed.")
invisible(gc())
}
I guess you can use this for any other type of clustering algorithm, it doesn't matter how you decided the cluster labels for the train data, as long as they are in your all_data before running the code.
Hope this help.
Not the most efficient or rigorous code. So, happy to see suggestions how to improve it.
*Note: I used t-SNE to compare the clustering of train with the test data and looks impressively clean. so, it seems it is working.
predict
on DBSCAN is not really well defined. Usually, it indicates you are using clustering when you should be doing classification. – Has QUIT--Anony-Mousse