I am trying to write a two layer neural network to train a class labeler. The input to the network is a 150-feature list of about 1000 examples; all features on all examples have been L2 normalized.
I only have two outputs, and they should be disjoint--I am just attempting to predict whether the example is a one or a zero.
My code is relatively simple; I am feeding the input data into the hidden layer, and then the hidden layer into the output. As I really just want to see this working in action, I am training on the entire data set with each step.
My code is below. Based on the other NN implementations I have referred to, I believe that the performance of this network should be improving over time. However, regardless of the number of epochs I set, I am getting back an accuracy of about ~20%. The accuracy is not changing when the number of steps are changed, so I don't believe that my weights and biases are being updated.
Is there something obvious I am missing with my model? Thanks!
import numpy as np
import tensorflow as tf
sess = tf.InteractiveSession()
# generate data
np.random.seed(10)
inputs = np.random.normal(size=[1000,150]).astype('float32')*1.5
label = np.round(np.random.uniform(low=0,high=1,size=[1000,1])*0.8)
reverse_label = 1-label
labels = np.append(label,reverse_label,1)
# parameters
learn_rate = 0.01
epochs = 200
n_input = 150
n_hidden = 75
n_output = 2
# set weights/biases
x = tf.placeholder(tf.float32, [None, n_input])
y = tf.placeholder(tf.float32, [None, n_output])
b0 = tf.Variable(tf.truncated_normal([n_hidden]))
b1 = tf.Variable(tf.truncated_normal([n_output]))
w0 = tf.Variable(tf.truncated_normal([n_input,n_hidden]))
w1 = tf.Variable(tf.truncated_normal([n_hidden,n_output]))
# step function
def returnPred(x,w0,w1,b0,b1):
z1 = tf.add(tf.matmul(x, w0), b0)
a2 = tf.nn.relu(z1)
z2 = tf.add(tf.matmul(a2, w1), b1)
h = tf.nn.relu(z2)
return h #return the first response vector from the
y_ = returnPred(x,w0,w1,b0,b1) # predict operation
loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=y_,labels=y) # calculate loss between prediction and actual
model = tf.train.GradientDescentOptimizer(learning_rate=learn_rate).minimize(loss) # apply gradient descent based on loss
init = tf.global_variables_initializer()
tf.Session = sess
sess.run(init) #initialize graph
for step in range(0,epochs):
sess.run(model,feed_dict={x: inputs, y: labels }) #train model
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: inputs, y: labels})) # print accuracy