I'm trying to run X-13-ARIMA model from statsmodels library in python 3.
I found this example in statsmodels documentation:
dta = sm.datasets.co2.load_pandas().data
dta.co2.interpolate(inplace=True)
dta = dta.resample('M').sum()
res = sm.tsa.x13_arima_select_order(dta.co2)
print(res.order, res.sorder)
results = sm.tsa.x13_arima_analysis(dta.co2)
fig = results.plot()
fig.set_size_inches(12, 5)
fig.tight_layout()
This works fine, but I also need to predict future values of this time series. The tsa.x13_arima_analysis() function contains forecast_years parameter, so I suppose it should be possible. However; the results object doesn't seem to change no matter what value of forecast_years parameter I choose.
How can I get the forecast values?