37
votes

I read data from a csv file ,but don't have index.

I want to add a column from 1 to row's number.

What should I do,Thanks (scala)

7

7 Answers

66
votes

With Scala you can use:

import org.apache.spark.sql.functions._ 

df.withColumn("id",monotonicallyIncreasingId)

You can refer to this exemple and scala docs.

With Pyspark you can use:

from pyspark.sql.functions import monotonically_increasing_id 

df_index = df.select("*").withColumn("id", monotonically_increasing_id())
41
votes

monotonically_increasing_id - The generated ID is guaranteed to be monotonically increasing and unique, but not consecutive.

"I want to add a column from 1 to row's number."

Let say we have the following DF

+--------+-------------+-------+
| userId | productCode | count |
+--------+-------------+-------+
|     25 |        6001 |     2 |
|     11 |        5001 |     8 |
|     23 |         123 |     5 |
+--------+-------------+-------+

To generate the IDs starting from 1

val w = Window.orderBy("count")
val result = df.withColumn("index", row_number().over(w))

This would add an index column ordered by increasing value of count.

+--------+-------------+-------+-------+
| userId | productCode | count | index |
+--------+-------------+-------+-------+
|     25 |        6001 |     2 |     1 |
|     23 |         123 |     5 |     2 |
|     11 |        5001 |     8 |     3 |
+--------+-------------+-------+-------+
17
votes

How to get a sequential id column id[1, 2, 3, 4...n]:

from pyspark.sql.functions import desc, row_number, monotonically_increasing_id
from pyspark.sql.window import Window

df_with_seq_id = df.withColumn('index_column_name', row_number().over(Window.orderBy(monotonically_increasing_id())) - 1)

Note that row_number() starts at 1, therefore subtract by 1 if you want 0-indexed column

14
votes

NOTE : Above approaches doesn't give a sequence number, but it does give increasing id.

Simple way to do that and ensure the order of indexes is like below.. zipWithIndex.

Sample data.

+-------------------+
|               Name|
+-------------------+
|     Ram Ghadiyaram|
|        Ravichandra|
|              ilker|
|               nick|
|             Naveed|
|      Gobinathan SP|
|Sreenivas Venigalla|
|     Jackela Kowski|
|   Arindam Sengupta|
|            Liangpi|
|             Omar14|
|        anshu kumar|
+-------------------+

    package com.example

import org.apache.spark.internal.Logging
import org.apache.spark.sql.SparkSession._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.{LongType, StructField, StructType}
import org.apache.spark.sql.{DataFrame, Row}

/**
  * DistributedDataIndex : Program to index an RDD  with
  */
object DistributedDataIndex extends App with Logging {

  val spark = builder
    .master("local[*]")
    .appName(this.getClass.getName)
    .getOrCreate()

  import spark.implicits._

  val df = spark.sparkContext.parallelize(
    Seq("Ram Ghadiyaram", "Ravichandra", "ilker", "nick"
      , "Naveed", "Gobinathan SP", "Sreenivas Venigalla", "Jackela Kowski", "Arindam Sengupta", "Liangpi", "Omar14", "anshu kumar"
    )).toDF("Name")
  df.show
  logInfo("addColumnIndex here")
  // Add index now...
  val df1WithIndex = addColumnIndex(df)
    .withColumn("monotonically_increasing_id", monotonically_increasing_id)
  df1WithIndex.show(false)

  /**
    * Add Column Index to dataframe to each row
    */
  def addColumnIndex(df: DataFrame) = {
    spark.sqlContext.createDataFrame(
      df.rdd.zipWithIndex.map {
        case (row, index) => Row.fromSeq(row.toSeq :+ index)
      },
      // Create schema for index column
      StructType(df.schema.fields :+ StructField("index", LongType, false)))
  }
}

Result :

+-------------------+-----+---------------------------+
|Name               |index|monotonically_increasing_id|
+-------------------+-----+---------------------------+
|Ram Ghadiyaram     |0    |0                          |
|Ravichandra        |1    |8589934592                 |
|ilker              |2    |8589934593                 |
|nick               |3    |17179869184                |
|Naveed             |4    |25769803776                |
|Gobinathan SP      |5    |25769803777                |
|Sreenivas Venigalla|6    |34359738368                |
|Jackela Kowski     |7    |42949672960                |
|Arindam Sengupta   |8    |42949672961                |
|Liangpi            |9    |51539607552                |
|Omar14             |10   |60129542144                |
|anshu kumar        |11   |60129542145                |
+-------------------+-----+---------------------------+
4
votes

As Ram said, zippedwithindex is better than monotonically increasing id, id you need consecutive row numbers. Try this (PySpark environment):

from pyspark.sql import Row
from pyspark.sql.types import StructType, StructField, LongType

new_schema = StructType(**original_dataframe**.schema.fields[:] + [StructField("index", LongType(), False)])
zipped_rdd = **original_dataframe**.rdd.zipWithIndex()
indexed = (zipped_rdd.map(lambda ri: row_with_index(*list(ri[0]) + [ri[1]])).toDF(new_schema))

where original_dataframe is the dataframe you have to add index on and row_with_index is the new schema with the column index which you can write as

row_with_index = Row(
"calendar_date"
,"year_week_number"
,"year_period_number"
,"realization"
,"index"
)

Here, calendar_date, year_week_number, year_period_number and realization were the columns of my original dataframe. You can replace the names with the names of your columns. index is the new column name you had to add for the row numbers.

0
votes

If you require a unique sequence number for each row, I have a slightly different approach, where a static column is added and is used to compute the row number using that column.

val srcData = spark.read.option("header","true").csv("/FileStore/sample.csv")
srcData.show(5)

+--------+--------------------+
|     Job|                Name|
+--------+--------------------+
|Morpheus|       HR Specialist|
|   Kayla|              Lawyer|
|  Trisha|          Bus Driver|
|  Robert|Elementary School...|
|    Ober|               Judge|
+--------+--------------------+

val srcDataModf = srcData.withColumn("sl_no",lit("1"))
val windowSpecRowNum =  Window.partitionBy("sl_no").orderBy("sl_no")

srcDataModf.withColumn("row_num",row_number.over(windowSpecRowNum)).drop("sl_no").select("row_num","Name","Job")show(5)

+-------+--------------------+--------+
|row_num|                Name|     Job|
+-------+--------------------+--------+
|      1|       HR Specialist|Morpheus|
|      2|              Lawyer|   Kayla|
|      3|          Bus Driver|  Trisha|
|      4|Elementary School...|  Robert|
|      5|               Judge|    Ober|
+-------+--------------------+--------+
0
votes

For SparkR:

(Assuming sdf is some sort of spark data frame)

sdf<- withColumn(sdf, "row_id", SparkR:::monotonically_increasing_id())