I have a list L of ~30k locations (written as longitude/latitude pairs), and a list E of ~1m events (with locations written as longitude/latitude pairs), each of which occurs at a point in L. I want to tag each event in E with its corresponding location in L. But the cooordinates in L and E are rounded differently—E to five decimal places, L to thirteen—so ostensibly identical coordinates can actually differ by ~10^-5 degrees, or ~1 meter. (Points in L are separated by at least ~10 m.)
I thus need the nearest point in L to every point of E; the obvious O(|L||E|) brute-force algorithm is too slow. L is small enough compared to E that algorithms that preprocess L and amortize the preprocessing time over E are fine. Is this a well-studied problem? The links that I can find are for related but distinct problems, like finding the minimal distance between a pair of points in one set.
Possibly relevant: Voronoi diagrams, though I can't see how preprocessing L into a Voronoi diagram would save me computational time.