0
votes

I'm trying to use the basic word count as defined here. Is it possible that when the IntSumReducer does context.write, that context.write could be passed to a second reducer or output class that would reduce/change the final list given by the IntSumReducer down to a single largest frequency?

I am quite new to Hadoop/MapReduce and the concept of jobs in Java so I'm uncertain how exactly I would need to modify the default WordCount to comply to make that possible. Could I write a second Reducer function and place it inside of the same job? How would I do that? How would I signal that there is another reducer to be run after IntSumReducer?

Base WordCount:

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {

   public static class TokenizerMapper
   extends Mapper<Object, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(Object key, Text value, Context context
                ) throws IOException, InterruptedException {
  StringTokenizer itr = new StringTokenizer(value.toString());
  while (itr.hasMoreTokens()) {
    word.set(itr.nextToken());
    context.write(word, one);
  }
}
}

public static class IntSumReducer
   extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values,
                   Context context
                   ) throws IOException, InterruptedException {
  int sum = 0;
  for (IntWritable val : values) {
    sum += val.get();
  }
  result.set(sum);
  context.write(key, result);
     }
}

  public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}`
1

1 Answers

0
votes

What you're looking for is called a Combiner in hadoop, which does some semi-reduction before emitting the output to a final reducer class. For more info on it click here.