For the following join between two DataFrames
in Spark 1.6.0
val df0Rep = df0.repartition(32, col("a")).cache
val df1Rep = df1.repartition(32, col("a")).cache
val dfJoin = df0Rep.join(df1Rep, "a")
println(dfJoin.count)
Does this join not only co-partitioned but also co-located? I know that for RDDs if using the same partitioner and shuffled in the same operation, the join would be co-located. But what about dataframes? Thank you.