0
votes

I'm experiencing worse than expected performance from Groovy Gpars while experimenting with multithreading on an i7-2960xm (4 core hyperthreaded). In my test I've been using a recursive fib calculator to simulate workload:

def fibRecursive(int index) {
    if (index == 0 || index == 1) {
        return index
    }
    else {
        return fibRecursive(index - 2) + fibRecursive(index - 1)
    }
}

To test Gpars I am currently using the following code:

def nums = [36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36]

GParsPool.withPool(4) {
    nums.eachParallel {
        SplitTimer internalTimer = new SplitTimer()
        println("fibRecursive(${it}): ${fibRecursive(it)}")
        internalTimer.split("fibRecursive(${it})")

        for (instance in internalTimer.splitTimes) {
            println(instance)
        }
    }
}

Calculating fib(36) in parallel takes around 1.9 seconds for withPool(4). withPool(1) takes around 1.4 seconds which I assumed would be somewhat similar to calling the function outside of Gpars but that only takes 0.4 seconds, eg:

nums.each {
    SplitTimer internalTimer = new SplitTimer()
    println("fibRecursive(${it}): ${fibRecursive(it)}")
    internalTimer.split("fibRecursive(${it})")

    for (instance in internalTimer.splitTimes) {
        println(instance)
    }
}

Could someone explain why I might be experiencing this kind of performance hit? Thanks!

Here is my SplitTimer just in case:

class SplitTimer {
    long initialTime
    int instances = 0

    class Instance {
        int index
        String name
        long time

        def elapsed() {
            return time - initialTime
        }

        def Instance(String instanceName) {
            this.index = this.instances++
            this.name = instanceName
            this.time = System.nanoTime()
        }

        String toString() {
            return "[Instance ${this.index}: \"${this.name}\" (${Formatter.elapsed(this.elapsed())} elapsed)]"
        }
    }

    def splitTimes = []

    def SplitTimer() {
        def initialInstance = new Instance("Start")
        this.initialTime = initialInstance.time
        splitTimes.add(initialInstance)
    }

    def split(String instanceName) {
        splitTimes.add(new Instance(instanceName))
    }
}

class Formatter {
    static int hours
    static int minutes
    static int seconds
    static int nanoseconds

    static setValues(time) {
        nanoseconds = time % 10**9

        seconds = time / 10**9
        minutes = seconds / 60
        hours = minutes / 60

        seconds %= 60
        minutes %= 60
    }

    static elapsed(time) {
        setValues(time)
        return "${hours}:" + "${minutes}:".padLeft(3, "0") + "${seconds}.".padLeft(3, "0") + "${nanoseconds}".padLeft(9,"0")
    }

    static absolute(time) {
        setValues(time)
        hours %= 24
        return "${hours}:".padLeft(3, "0") + "${minutes}:".padLeft(3, "0") + "${seconds}.".padLeft(3, "0") + "${nanoseconds}".padLeft(9,"0")
    }
}
1

1 Answers

0
votes

The workload it takes to parallelize a small number of function calls can be more than it takes to run them sequentially. However, this could change if you, for example, called fibonacci with very big numbers.