201
votes

What is a closure? Do we have them in .NET?

If they do exist in .NET, could you please provide a code snippet (preferably in C#) explaining it?

12

12 Answers

268
votes

I have an article on this very topic. (It has lots of examples.)

In essence, a closure is a block of code which can be executed at a later time, but which maintains the environment in which it was first created - i.e. it can still use the local variables etc of the method which created it, even after that method has finished executing.

The general feature of closures is implemented in C# by anonymous methods and lambda expressions.

Here's an example using an anonymous method:

using System;

class Test
{
    static void Main()
    {
        Action action = CreateAction();
        action();
        action();
    }

    static Action CreateAction()
    {
        int counter = 0;
        return delegate
        {
            // Yes, it could be done in one statement; 
            // but it is clearer like this.
            counter++;
            Console.WriteLine("counter={0}", counter);
        };
    }
}

Output:

counter=1
counter=2

Here we can see that the action returned by CreateAction still has access to the counter variable, and can indeed increment it, even though CreateAction itself has finished.

23
votes

If you are interested in seeing how C# implements Closure read "I know the answer (its 42) blog"

The compiler generates a class in the background to encapsulate the anoymous method and the variable j

[CompilerGenerated]
private sealed class <>c__DisplayClass2
{
    public <>c__DisplayClass2();
    public void <fillFunc>b__0()
    {
       Console.Write("{0} ", this.j);
    }
    public int j;
}

for the function:

static void fillFunc(int count) {
    for (int i = 0; i < count; i++)
    {
        int j = i;
        funcArr[i] = delegate()
                     {
                         Console.Write("{0} ", j);
                     };
    } 
}

Turning it into:

private static void fillFunc(int count)
{
    for (int i = 0; i < count; i++)
    {
        Program.<>c__DisplayClass1 class1 = new Program.<>c__DisplayClass1();
        class1.j = i;
        Program.funcArr[i] = new Func(class1.<fillFunc>b__0);
    }
}
12
votes

Closures are functional values that hold onto variable values from their original scope. C# can use them in the form of anonymous delegates.

For a very simple example, take this C# code:

    delegate int testDel();

    static void Main(string[] args)
    {
        int foo = 4;
        testDel myClosure = delegate()
        {
            return foo;
        };
        int bar = myClosure();

    }

At the end of it, bar will be set to 4, and the myClosure delegate can be passed around to be used elsewhere in the program.

Closures can be used for a lot of useful things, like delayed execution or to simplify interfaces - LINQ is mainly built using closures. The most immediate way it comes in handy for most developers is adding event handlers to dynamically created controls - you can use closures to add behavior when the control is instantiated, rather than storing data elsewhere.

10
votes
Func<int, int> GetMultiplier(int a)
{
     return delegate(int b) { return a * b; } ;
}
//...
var fn2 = GetMultiplier(2);
var fn3 = GetMultiplier(3);
Console.WriteLine(fn2(2));  //outputs 4
Console.WriteLine(fn2(3));  //outputs 6
Console.WriteLine(fn3(2));  //outputs 6
Console.WriteLine(fn3(3));  //outputs 9

A closure is an anonymous function passed outside of the function in which it is created. It maintains any variables from the function in which it is created that it uses.

4
votes

Here is a contrived example for C# which I created from similar code in JavaScript:

public delegate T Iterator<T>() where T : class;

public Iterator<T> CreateIterator<T>(IList<T> x) where T : class
{
        var i = 0; 
        return delegate { return (i < x.Count) ? x[i++] : null; };
}

So, here is some code that shows how to use the above code...

var iterator = CreateIterator(new string[3] { "Foo", "Bar", "Baz"});

// So, although CreateIterator() has been called and returned, the variable 
// "i" within CreateIterator() will live on because of a closure created 
// within that method, so that every time the anonymous delegate returned 
// from it is called (by calling iterator()) it's value will increment.

string currentString;    
currentString = iterator(); // currentString is now "Foo"
currentString = iterator(); // currentString is now "Bar"
currentString = iterator(); // currentString is now "Baz"
currentString = iterator(); // currentString is now null

Hope that is somewhat helpful.

3
votes

Closures are chunks of code that reference a variable outside themselves, (from below them on the stack), that might be called or executed later, (like when an event or delegate is defined, and could get called at some indefinite future point in time)... Because the outside variable that the chunk of code references may gone out of scope (and would otherwise have been lost), the fact that it is referenced by the chunk of code (called a closure) tells the runtime to "hold" that variable in scope until it is no longer needed by the closure chunk of code...

2
votes

Basically closure is a block of code that you can pass as an argument to a function. C# supports closures in form of anonymous delegates.

Here is a simple example:
List.Find method can accept and execute piece of code (closure) to find list's item.

// Passing a block of code as a function argument
List<int> ints = new List<int> {1, 2, 3};
ints.Find(delegate(int value) { return value == 1; });

Using C#3.0 syntax we can write this as:

ints.Find(value => value == 1);
2
votes

A closure is when a function is defined inside another function (or method) and it uses the variables from the parent method. This use of variables which are located in a method and wrapped in a function defined within it, is called a closure.

Mark Seemann has some interesting examples of closures in his blog post where he does a paralel between oop and functional programming.

And to make it more detailed

var workingDirectory = new DirectoryInfo(Environment.CurrentDirectory);//when this variable
Func<int, string> read = id =>
    {
        var path = Path.Combine(workingDirectory.FullName, id + ".txt");//is used inside this function
        return File.ReadAllText(path);
    };//the entire process is called a closure.
1
votes

If you write an inline anonymous method (C#2) or (preferably) a Lambda expression (C#3+), an actual method is still being created. If that code is using an outer-scope local variable - you still need to pass that variable to the method somehow.

e.g. take this Linq Where clause (which is a simple extension method which passes a lambda expression):

var i = 0;
var items = new List<string>
{
    "Hello","World"
};   
var filtered = items.Where(x =>
// this is a predicate, i.e. a Func<T, bool> written as a lambda expression
// which is still a method actually being created for you in compile time 
{
    i++;
    return true;
});

if you want to use i in that lambda expression, you have to pass it to that created method.

So the first question that arises is: should it be passed by value or reference?

Pass by reference is (I guess) more preferable as you get read/write access to that variable (and this is what C# does; I guess the team in Microsoft weighed the pros and cons and went with by-reference; According to Jon Skeet's article, Java went with by-value).

But then another question arises: Where to allocate that i?

Should it actually/naturally be allocated on the stack? Well, if you allocate it on the stack and pass it by reference, there can be situations where it outlives it's own stack frame. Take this example:

static void Main(string[] args)
{
    Outlive();
    var list = whereItems.ToList();
    Console.ReadLine();
}

static IEnumerable<string> whereItems;

static void Outlive()
{
    var i = 0;
    var items = new List<string>
    {
        "Hello","World"
    };            
    whereItems = items.Where(x =>
    {
        i++;
        Console.WriteLine(i);
        return true;
    });            
}

The lambda expression (in the Where clause) again creates a method which refers to an i. If i is allocated on the stack of Outlive, then by the time you enumerate the whereItems, the i used in the generated method will point to the i of Outlive, i.e. to a place in the stack that is no longer accessible.

Ok, so we need it on the heap then.

So what the C# compiler does to support this inline anonymous/lambda, is use what is called "Closures": It creates a class on the Heap called (rather poorly) DisplayClass which has a field containing the i, and the Function that actually uses it.

Something that would be equivalent to this (you can see the IL generated using ILSpy or ILDASM):

class <>c_DisplayClass1
{
    public int i;

    public bool <GetFunc>b__0()
    {
        this.i++;
        Console.WriteLine(i);
        return true;
    }
}

It instantiates that class in your local scope, and replaces any code relating to i or the lambda expression with that closure instance. So - anytime you are using the i in your "local scope" code where i was defined, you are actually using that DisplayClass instance field.

So if I would change the "local" i in the main method, it will actually change _DisplayClass.i ;

i.e.

var i = 0;
var items = new List<string>
{
    "Hello","World"
};  
var filtered = items.Where(x =>
{
    i++;
    return true;
});
filtered.ToList(); // will enumerate filtered, i = 2
i = 10;            // i will be overwriten with 10
filtered.ToList(); // will enumerate filtered again, i = 12
Console.WriteLine(i); // should print out 12

it will print out 12, as "i = 10" goes to that dispalyclass field and changes it just before the 2nd enumeration.

A good source on the topic is this Bart De Smet Pluralsight module (requires registration) (also ignore his erroneous use of the term "Hoisting" - what (I think) he means is that the local variable (i.e. i) is changed to refer to the the new DisplayClass field).


In other news, there seems to be some misconception that "Closures" are related to loops - as I understand "Closures" are NOT a concept related to loops, but rather to anonymous methods / lambda expressions use of local scoped variables - although some trick questions use loops to demonstrate it.

0
votes

Just out of the blue,a simple and more understanding answer from the book C# 7.0 nutshell.

Pre-requisit you should know :A lambda expression can reference the local variables and parameters of the method in which it’s defined (outer variables).

    static void Main()
    {
    int factor = 2;
   //Here factor is the variable that takes part in lambda expression.
    Func<int, int> multiplier = n => n * factor;
    Console.WriteLine (multiplier (3)); // 6
    }

Real part:Outer variables referenced by a lambda expression are called captured variables. A lambda expression that captures variables is called a closure.

Last Point to be noted:Captured variables are evaluated when the delegate is actually invoked, not when the variables were captured:

int factor = 2;
Func<int, int> multiplier = n => n * factor;
factor = 10;
Console.WriteLine (multiplier (3)); // 30
0
votes

A closure aims to simplify functional thinking, and it allows the runtime to manage state, releasing extra complexity for the developer. A closure is a first-class function with free variables that are bound in the lexical environment. Behind these buzzwords hides a simple concept: closures are a more convenient way to give functions access to local state and to pass data into background operations. They are special functions that carry an implicit binding to all the nonlocal variables (also called free variables or up-values) referenced. Moreover, a closure allows a function to access one or more nonlocal variables even when invoked outside its immediate lexical scope, and the body of this special function can transport these free variables as a single entity, defined in its enclosing scope. More importantly, a closure encapsulates behavior and passes it around like any other object, granting access to the context in which the closure was created, reading, and updating these values.

enter image description here

-1
votes

A closure is a function, defined within a function, that can access the local variables of it as well as its parent.

public string GetByName(string name)
{
   List<things> theThings = new List<things>();
  return  theThings.Find<things>(t => t.Name == name)[0];
}

so the function inside the find method.

 t => t.Name == name

can access the variables inside its scope, t, and the variable name which is in its parents scope. Even though it is executed by the find method as a delegate, from another scope all together.