In addition to the other responses, here are some suggestions for improving schema performance.
First: Automatic compression encodings using COPY command
Improve the performance of Amazon Redshift using the COPY command. It will get data into Redshift database. The COPY command is clever enough. It automatically chooses the most appropriate encoding settings for the data it uploads. You don’t have to think about it. However, it does so only for the first data upload into an empty table.
So, make sure to use a significant data set while uploading data for the first time, which Redshift can assess to set the column encodings in the best way. Uploading a few lines of test data will confuse Redshift to know how best to optimize the compression to handle the real workload.
Second: Use Best Distribution Style and Key
Distribution-style decides how data is distributed across the nodes. Applying a distribution style at table level tells Redshift how you want to distribute the table and the key. So, how you specify distribution style is important for good query performance with Redshift. The style you choose may affect requirements for data storage and cluster. It also affects the time taken by the COPY command to execute.
I recommend setting the distribution style to all tables with a smaller dimension. For large dimension, distribute both the dimension and associated fact on their join column. To optimize the second large dimension, take the storage-hit and distribute ALL. You can even design the dimension columns into the fact.
Third: Use the Best Sort Key
A Redshift database maintains data in a table with an arrangement of a sort-key-column if specified. Since it’s sorted in each partition; each cluster node upholds its partition in predefined order. (While designing your Redshift schema, also consider the impact on your budget. Redshift is priced by amount of stored data and by the number of nodes.)
Sort key optimizes Amazon Redshift performance significantly. You can do it in many ways. First, use data filtering. If where-clause filters on a sort-key-column, it skips the entire data blocks. It’s because Redshift saves data in blocks. Each block header records the minimum and maximum sort key value. Filter outside of that range, the entire block may get skipped.
Alternatively, when joining two tables, sorted on their joint keys, the data is read in matching order. Also, you can merge-join without separate sort-steps. Joining large dimension to a large fact table will be easy with this method because neither will fit into a hash table.